Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jak wytworzyć naddźwiękową falę?

Recommended Posts

Kamień uderzający w lustro wody może wywołać powstanie naddźwiękowego strumienia powietrza - udowadniają naukowcy z holenderskiego Uniwersytetu w Twente. To niespodziewane odkrycie rozszerza naszą wiedzę na temat aerodynamiki i może pomóc m.in. w stworzeniu bardziej efektywnych pojazdów.

Badaniem niezwykłego zjawiska zajmował się Stephan Gekle, magistrant pracujący na holenderskiej uczelni. Młody badacz obserwował fale powstające na powierzchni wody po uderzeniu płaskiego dysku, a więc w sytuacji podobnej do zabawy w "puszczanie kaczek" z brzegu jeziora.

Jak się okazało, powietrze poruszone przez krążek wybija w powierzchni wody podłużną szczelinę. Po chwili zostaje ona ściśnięta przez otaczającą ciecz i przyjmuje kształt klepsydry. Po zaledwie kilku milisekundach zwężenie w środkowej części fali zaciska się jeszcze bardziej, zwiększając ciśnienie powietrza zamkniętego pomiędzy powierzchnią wody a wciąż opadającym "kamieniem".

Zaraz po tym, jak szyjka "klepsydry" zamyka się całkowicie, ciśnienie powietrza przekracza krytyczną wartość i powoduje nagłe wystrzelenie strugi gazu. Na podstawie serii pomiarów ustalono, że strumień ten, mający szerokość ok. 1 mm, osiąga prędkość dźwięku. Obserwacja ta zaskoczyła nawet samego autora studium, gdyż jedyne dostępne dotąd (i do tego czysto teoretyczne) dane zakładały, że naddźwiękowe strugi powietrza mogłyby mieć co najwyżej szerokość mierzoną w mikrometrach. To ekscytujące i zaskakujące, że dzieje się to tak naprawdę przy makroskopowych rozmiarach szyjki, podkreśla badacz. 

 

Źródło: Stephan Gekle 

Dokonane odkrycie może mieć istotne znaczenie dla m.in. badań z zakresu aerodynamiki i hydrodynamiki. Dokładne zrozumienie zjawisk rządzących przepływem cieczy oraz gazów może ułatwić uporządkowanie ich przepływu wokół różnych obiektów, zmniejszając tym samym ilość energii potrzebnej do utrzymania ich w ruchu. Efektem takich działań może być m.in. zmniejszenie zużycia paliwa przez nasze samochody lub poprawę sprawności elektrowni wiatrowych.

Share this post


Link to post
Share on other sites

No to może jakiś kumacz spośród czytelników Kopalni wyjaśni zagadkę energii promieniowanej przez kawitację? Ponoć spektrum tej energii wskazuje na niebotyczne energie. Co się dzieje podczas zjawiska kawitacji? Bo ja podejrzewam, że ono może zachodzić w tym przypadku.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przechłodzona woda to tak naprawdę dwie ciecze w jednej – wykazali naukowcy z Pacific Northwest National Laboratory (PNNL). Wykonali oni szczegółowe badania wody, która zachowuje stan ciekły znacznie poniżej temperatury zamarzania. Okazało się, że w wodzie takiej istnieją dwie różne struktury.
      Odkrycie pozwala wyjaśnić niektóre dziwne właściwości, jakie wykazuje woda w niezwykle niskich temperaturach, jakie panują w przestrzeni kosmicznej czy na krawędziach atmosfery. Dotychczas istniały różne teorie na ten temat, a naukowcy spierali się co do niezwykłych właściwości przechłodzonej wody. Teraz otrzymali pierwsze eksperymentalnie potwierdzone dane odnośnie jej struktury. Nie są to spory czysto akademickie, gdyż zrozumienie wody, która pokrywa 71% powierzchni Ziemi, jest kluczowe dla zrozumienia, w jaki sposób reguluje ono środowisko naturalne, nasze organizmy i jak wpływa na samo życie.
      Wykazaliśmy, że ciekła woda w ekstremalnie niskich temperaturach jest nie tylko dość stabilna, ale istnie też w dwóch stanach strukturalnych. Odkrycie to pozwala na rozstrzygnięcie sporu dotyczącego tego, czy mocno przechłodzona woda zawsze krystalizuje przed osiągnięciem stanu równowagi. Odpowiedź brzmi: nie, mówi Greg Kimmel z PNNL. Dotychczas naukowcy sprzeczali się np. o to, czy woda schłodzona do temperatury -83 stopni Celsjusza rzeczywiście może istnieć w stanie ciekłym i czy jej dziwne właściwości nie wynikają ze zmian zachodzących przed krzepnięciem.
      Woda, pomimo swojej prostej budowy, jest bardzo skomplikowaną cieczą. Na przykład bardzo trudno jest zamrozić wodę w temperaturze nieco poniżej temperatury topnienia. Woda opiera się zamarznięciu. Potrzebuje ośrodka, wokół którego zamarznie, jak np. fragment ciała stałego. Woda rozszerza się podczas zamarzania, co jest zadziwiającym zachowaniem w porównaniu z innymi cieczami. Jenak to dzięki temu na Ziemi może istnieć życie w znanej nam postaci. Gdyby woda kurczyła się zamarzając i opadała na dno lub gdyby para wodna w atmosferze nie zatrzymywała ciepła, powstanie takiego życia jak obecnie byłoby niemożliwe.
      Bruce Kay i Greg Kimmel z PNNL od 25 lat badają niezwykłe właściwości wody. Teraz, przy pomocy Loni Kringle i Wyatta Thornleya dokonali przełomowych badań, które lepiej pozwalają zrozumieć zachowanie molekuł wody.
      Wykazały one, że w mocno przechłodzonej wodzie dochodzi do kondensacji w gęstą podobną do płynu strukturę. Istnieje ona równocześnie z mniej gęstą strukturą, w której wiązania bardziej przypominają te spotykane w wodzie. Proporcja gęstej struktury gwałtownie obniża się wraz ze spadkiem temperatury z -28 do -83 stopni Celsjusza. Naukowcy wykorzystali spektroskopię w podczerwieni do obserwowania molekuł wody i wykonania obrazowania na różnych etapach badań. Kluczowy jest fakt, że wszystkie te zmiany strukturalne były odwracalne i powtarzalne, mówi Kringle.
      Badania pozwalają lepiej zrozumieć zjawisko krupy śnieżnej, która czasem opada na ziemię. Tworzy się ona gdy płatki śniegu stykają się w górnych partiach atmosfery z przechłodzoną wodą. Ciekła woda a górnych partiach atmosfery jest silnie przechłodzona. Gdy dochodzi do jej kontaktu z płatkiem śniegu, gwałtownie zamarza i w odpowiednich warunkach opada na ziemię. To jedyny raz, gdy większość ludzi ma do czynienia z przechłodzoną wodą, mówi Bruce Kay.
      Dzięki pracy amerykańskich uczonych można będzie lepiej zrozumieć, jak ciekła woda może istnieć na bardzo zimnych planetach. Pomoże też w badaniu warkoczy komet, w które w znacznej mierze składają się z przechłodzonej wody.
      Praca Kaya i Kimmela znajdzie też praktyczne zastosowanie. Pomaga ona bowiem lepiej zrozumieć np. zachowanie molekuł wody otaczających proteiny, co pomoże w pracach nad nowymi lekami. Woda otaczająca indywidualne proteiny nie ma zbyt dużo miejsca. Nasze badania mogą pomóc w zrozumieniu, jak woda zachowuje się w tak ciasnych środowiskach, mówi Kringle. Thornley dodaje zaś, że podczas przyszłych badań możemy wykorzystać opracowaną przez nas technikę do śledzenia zmian zachodzących podczas różnych reakcji chemicznych.
      Więcej o badaniach można przeczytać w artykule Reversible structural transformations in supercooled liquid water from 135 to 245 K.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Queen Mary University, University of Cambridge oraz Instytutu Fizyki Wysokich Ciśnień z Troicku określili górną granicę prędkości dźwięku. Okazało się, że wynosi ona około 36 100 m/s (129 360 km/h), czyli trzykrotnie więcej niż prędkość dźwięku w diamencie. Przypomnijmy, że w powietrzu prędkość dźwięku to ok. 340 m/s (1225 km/h).
      Fale dźwiękowe znacznie szybciej przenoszą się w ciałach stałych niż w gazach. Dlatego też, np. pociąg szybciej usłyszymy przykładając ucho do szyn niż nasłuchując z powietrza. Ze szczególnej teorii względności wiemy, że maksymalna prędkość światła wynosi ok. 300 000 km/s. Dotychczas jednak nie wiedzieliśmy, czy istnieje i jaka jest górna granica prędkości dźwięku w gazach czy ciałach stałych. Teraz z artykułu opublikowanego na łamach Science Advance dowiadujemy się, że maksymalna prędkość dźwięku w danym ośrodku zależy od stałej struktury subtelnej oraz stosunku masy protonu do elektronu.
      Nie od dzisiaj wiemy, że te dwie stałe odgrywają ważną rolę w naszym rozumieniu wszechświata. Od nich zależą różne procesy, takie jak rozpad protonu i syntezja jądrowa zachodząca w gwiazdach. To od równowagi pomiędzy nimi znależy istnienie ekosfery wokół gwiazd, gdzie mogą pojawić się pierwsze molekuły życia.
      Naukowcy przetestowali swoje teoretyczne obliczenia na bardzo wielu materiałach. Szczególnie skupili się na sprawdzeniu jednego szczególnego zjawiska. Otóż z ich wyliczeń wynikało, że prędkość dźwięku powinna spadać wraz ze wzrostem masy atomów, z których zbudowany jest ośrodek. To zaś oznaczało, że dźwięk najszybciej rozprzestrzenia się w zestalonym wodorze atomowym. Jednak materiał taki można uzyskać przy ciśnieniu powyżej 1 miliona atmosfer. To ciśnienie porównywalne z tym, jakie istnieje w jądrze Jowisza. Wtedy też wodór staje się metalicznym ciałem stałym, świetnie przewodzi elektryczność i prawdopodobnie jest nadprzewodnikiem w temperaturze pokojowej. Dlatego też naukowcy wykonali obliczenia dla rozprzestrzeniania się dźwięku w takim zestalonym wodorze i zauważyli, że jego prędkość jest bliska teoretycznej granicy.
      Szczegóły badań opublikowano w pracy Speed of sound form fundamental physical constants.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmiany klimatyczne mogą w wielu miejscach na świecie zmniejszyć zdolność gleby do absorbowania wody, twierdzą naukowcy z Rutgers University. To zaś będzie miało negatywny wpływ na zasoby wód gruntowych, produkcję i bezpieczeństwo żywności, odpływ wód po opadach, bioróżnorodność i ekosystemy.
      Wskutek zmian klimatu na całym świecie zmieniają się wzorce opadów i inne czynniki środowiskowe, uzyskane przez nas wyniki sugerują, że w wielu miejscach na świecie może dość szybko dojść do znacznej zmiany sposobu interakcji wody z glebą, mówi współautor badań Daniel Giménez. Sądzimy, że należy badać kierunek, wielkość i tempo tych zmian i włączyć je w modele klimatyczne. Uczony dodaje, że obecność wody w glebie jest niezbędna, by ta mogła przechowywać węgiel, jej brak powoduje uwalnianie węgla do atmosfery.
      W ubiegłym roku w Nature ukazał się artykuł autorstwa Giméneza, w którym naukowiec wykazał, że regionalne wzrosty opadów mogą prowadzić do mniejszego przesądzania wody, większego jej spływu po powierzchni, erozji oraz większego ryzyka powodzi. Badania wykazały, że przenikanie wody do gleby może zmienić się już w ciągu 1-2 dekad zwiększonych opadów. Jeśli zaś mniej wody będzie wsiąkało w glebę, mniej będzie dostępne dla roślin i zmniejszy się parowanie.
      Naukowcy z Rutgers University od 25 lat prowadzą badania w Kansas, w ramach których zraszają glebę na prerii. W tym czasie odkryli, że zwiększenie opadów o 35% prowadzi do zmniejszenia tempa wsiąkania wody w glebę o 21–35 procent i jedynie do niewielkiego zwiększenia retencji wody.
      Największe zmiany zostały przez naukowców powiązane ze zmianami w porach w glebie. Duże pory przechwytują wodę, z której korzystają rośliny i mikroorganizmy, co prowadzi do zwiększonej aktywności biologicznej, poprawia obieg składników odżywczych w glebie i zmniejsza erozję.
      Gdy jednak dochodzi do zwiększenia opadów, rośliny mają grubsze korzenie, które mogą zatykać pory, a to z kolei powoduje, że gleba słabiej się poszerza i kurczy gdy wody jest więcej lub mniej.
      W kolejnym etapie badań naukowcy chcą dokładnie opisać mechanizm zaobserwowanych zmian, by móc ekstrapolować wyniki badań z Kansas na inne regiony świata i określić, w jaki sposób zmiany opadów wpłyną na gleby i ekosystemy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Oczyszczanie wody z rozpuszczalników organicznych, takich jak trichloroetylen (TRI), to nic nowego. Ale znalezienie metody, która takie zanieczyszczenia rzeczywiście neutralizuje, a nie tylko przesuwa w inne miejsce, to już wyczyn. Zespół pod kierunkiem dr hab. Anny Śrębowatej opracował metodę katalitycznego wodorooczyszczania, czyli przekształcania TRI w mniej szkodliwe dla środowiska węglowodory. Dzięki naukowcom z IChF PAN woda, nie tylko w naszych kranach, ale też w rzekach, może być czystsza i bezpieczniejsza dla zdrowia.
      Czysta woda to skarb, a zarazem dobro coraz trudniej dostępne. Rozmaite zanieczyszczenia są powszechne, a część z nich niezwykle trudno usunąć. Do takich zanieczyszczeń należy trichloroetylen (w Polsce oznaczany akronimem TRI). Ten organiczny rozpuszczalnik był powszechnie stosowany np. w syntezach organicznych, pralniach chemicznych oraz do przemysłowego odtłuszczania metali w procesie ich obróbki. Ze względu na szkodliwość od 2016 r. jego użycie zostało oficjalnie zakazane. Jednakże biorąc pod uwagę trwałość, może on jeszcze przez wiele lat występować zarówno w wodzie, jak i glebie – wyjaśnia Emil Kowalewski z zespołu, który opracował nowatorską metodę oczyszczania wody z tego związku. Projekt jest częścią globalnego trendu skoncentrowanego na ochronie zasobów wodnych. Prowadzone badania mogą być interesujące dla przemysłu, stać się potencjalnym punktem wyjścia do opracowania nowatorskich systemów oczyszczania wody. Dlaczego?
      Dzisiejsze oczyszczalnie ścieków to systemy składające się z wielu procesów fizycznych, chemicznych i biologicznych, ale efektywnie eliminują głównie konwencjonalne zanieczyszczenia. Inne przy odpowiednio wysokich stężeniach mogą pozostawać w wodzie. Tymczasem trichloroetylenu nie powinno być w niej wcale, ze względu na to, że jest mutagenny, kancerogenny, teratogenny, a do tego niezwykle trwały. Kumuluje się i zostaje na dnie zbiorników, a że jego rozpuszczalność w wodzie jest bardzo słaba, może szkodzić jeszcze przez wiele lat.
      Dziś z takimi związkami radzimy sobie, głównie przeprowadzając ich sorpcję. Jednakże w ten sposób jedynie przenosimy zagrożenie z miejsca na miejsce. Atrakcyjnym rozwiązaniem wydaje się katalityczne wodorooczyszczanie, czyli przekształcanie TRI w mniej szkodliwe dla środowiska węglowodory. Aby w pełni wykorzystać potencjał drzemiący w tej metodzie, trzeba było jednak opracować wydajny, stabilny i tani katalizator -mówi dr hab. Anna Śrębowata, profesor IChF.
      Wcześniej przeprowadzaliśmy badania z katalizatorami palladowymi. Były skuteczne, ale kosztowne - uśmiecha się Emil Kowalewski. Nowe katalizatory niklowe, opracowane w IChF PAN, pozwalają w tani i efektywny sposób prowadzić proces oczyszczania wody w trybie przepływowym, a przy tym są proste w syntezie. Wykorzystując katalizator, w którym nanocząstki niklu o średnicy ok. 20 nm osadzamy na powierzchni węgla aktywnego, łączymy właściwości sorpcyjne węgla i aktywność katalityczną niklu - wyjaśnia dr Kowalewski. W swoich badaniach naukowcy z IChF PAN wykazali ponadto, że nanocząstki niklu osadzone na węglu aktywnym o częściowo uporządkowanej strukturze wykazują wyższą aktywność i stabilność niż analogiczny katalizator oparty na nośniku o strukturze amorficznej.
      Naukowcy są jednak najbardziej dumni z innowacyjnego elementu swoich badań: technologii przepływowej. Dzięki niej można optymalizować parametry procesu, zmniejszyć ilość odpadów, a przy tym wykorzystywać katalizatory, które w reaktorach okresowych (czyli takich, gdzie jednorazowo oczyszcza się określoną partię produktu) były nieefektywne lub wręcz nieskuteczne. Tak było z naszym katalizatorem niklowym - opowiada dr Kowalewski. Bez technologii przepływowej jego zdolności do utylizowania TRI szybko spadały, katalizator ulegał zatruciu. W reaktorze przepływowym nawet po 25 godzinach nie obserwowaliśmy spadku aktywności, choć prowadziliśmy badania na stężeniach około 8000 razy przekraczających polskie normy jego zawartości w wodzie pitnej.
      Gdzie można wykorzystać nowatorską metodę? Przede wszystkim w stacjach uzdatniania wody i oczyszczalniach ścieków. Tam, gdzie chcemy, żeby woda trafiająca do "końcowego odbiorcy", niezależnie czy jest to użytkownik wody z kranu, czy pływająca w rzece ryba, była czysta.
      A co zrobić z produktami reakcji wodorooczyszczania wody z trichloroetylenu? Powstającymi związkami są węglowodory, głównie etylen. Nie powstaje go jednak na tyle dużo, by wystarczyło na dojrzewalnię bananów - uśmiecha się półżartem naukowiec. Po prostu się ulotni...

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W artykule, opublikowanym właśnie na łamach Physical Review Letters, grupa fizyków wysunęła hipotezę, że fale dźwiękowe... posiadają masę. To zaś by oznaczało, że mogą odczuwać bezpośredni wpływ grawitacji. Uczeni sugerują, że fonony w polu grawitacyjnym mogą posiadać masę. Można by się spodziewać, że zagadnienia z zakresu fizyki klasycznej, takie jak to, są od dawna rozstrzygnięte, mówi główny autor artykułu, Angelo Esposito z Columbia University. Wpadliśmy na to przypadkiem, dodaje.
      W ubiegłym roku Alberto Nicolis z Columbia University i Riccardo Penco z Carnegie Mellon University zasugerowali, że fonony mogą mieć masę w materii nadciekłej. Esposito i jego zespół twierdzą, że efekt ten można obserwować też w innych ośrodkach, w tym w zwykłych płynach, ciałach stałych oraz w powietrzu.
      Mimo, że masa niesiona przez fonon jest niewielka i wynosi około 10-24 grama, może być mierzalna. Jednak, jeśli próbujemy ją zmierzyć, okaże się że jest ona ujemna, zatem fonon będzie „spadał do góry”, czyli oddalał się od źródła grawitacji.
      Gdyby ich masa była dodatnia, opadałyby w dół. Jako, że jest ujemna, opadają w górę, mówi Riccardo Penco. Przestrzeń na jakiej „opadają” jest równie niewielka, co ich masa i zależy od medium, przez który fonon się przemieszcza. W wodzie, gdzie dźwięk przenosi się z prędkością 1,5 kilometra na sekundę, ujemna masa fononu powoduje, że odchylenie wynosi 1 stopień na sekundę. Taki odchylenie bardzo trudno zmierzyć.
      Nie jest to jednak niemożliwe. Zdaniem Esposito można by tego dokonać w ośrodku, w którym dźwięk przemieszcza się bardzo wolno. Wykonanie pomiaru powinno być możliwe np. w nadciekłym helu, gdzie prędkość dźwięku może spaść do kilkuset metrów na sekundę. Alternatywnym sposobem dla poszukiwania miniaturowych skutków przechodzenia fononu przez egzotyczne ośrodki może być szczegółowe badania bardzo intensywnych fal dźwiękowych.
      Z wyliczeń zespołu Esposito wynika, że trzęsienie ziemi o sile 9 stopni powinno uwolnić tyle energii, że zmiana przyspieszenia dźwięku w polu grawitacyjnym powinna być mierzalna za pomocą zegarów atomowych. Co prawda obecnie dostępna technologia nie jest wystarczająco czuła, by wykryć pole grawitacyjne fal sejsmicznych, ale w przyszłości powinno być to możliwe.
      Zanim nie przeczytałem tego artykułu, sądziłem, że fale dźwiękowe nie przenoszą masy, mówi Ira Rothstein z Carnegie Mellon University. To ważne badania, gdyż okazuje się, że w fizyce klasycznej, o której sądzimy, że ją rozumiemy, można znaleźć coś nowego. Wystarczy dokładnie się przyjrzeć, by znaleźć niezbadane obszary.
      Esposito nie wie, dlaczego dotychczas nikt nie wpadł na ten pomysł, co jego zespół. Może dlatego, że zajmujemy się fizyką wysokich energii, więc grawitacja to nasz chleb powszedni. To nie żadne teoretyczne czary-mary. Można było wpaść na to już przed wielu laty.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...