Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Informacje wzrokowe w postaci ruchów wykonywanych przez perkusistę czy ksylofonistę mogą wpływać na to, jak odbieramy muzykę, stwarzając wrażenie, że dźwięki są dłuższe bądź krótsze niż rzeczywistości (Percussive Notes).

Profesor Michael Schutz z Wydziału Muzyki McMaster University opisał w swoim najnowszym artykule, jak zawodowi muzycy zmieniają za pomocą gestów sposób słyszenia utworu przez audytorium. Sami nie zdają sobie sprawy, że posługują się jakimkolwiek trikiem.

Analizując nagrania wideo światowej sławy marimbisty Michaela Burritta, kanadyjski naukowiec odkrył, że długość ruchu, którego uwieńczeniem jest uderzenie w instrument, nie wpływa na długość wydawanego w ten sposób dźwięku. Oznacza to, że dźwięki następujące po zamaszystym i krótkim ruchu są akustycznie nierozróżnialne. Gdy jednak uczestnicy eksperymentu oglądali podczas słuchania występ muzyka, dźwięki wydawały im się, odpowiednio, dłuższe lub krótsze w wyniku zintegrowania przez mózg danych wzrokowych i słuchowych. To coś podobnego do dobrze wszystkim znanego złudzenia brzuchomówcy, kiedy sądzimy, że docierający do nas głos wydobywa się z ust niemej kukiełki.

Schutz zastanawia się nad tym, czy w takiej sytuacji jedne doświadczenia muzyczne są lepsze od innych. Skoro muzyk może przekazać swoje "intencje" za pomocą wskazówek wzrokowych, to czy płyty CD, pliki MP3 lub audycje radiowe pozbawiają wykonawców i słuchaczy istotnego wymiaru komunikacji muzycznej?

Zawodowi muzycy wprowadzają w błąd nie tylko słuchaczy, ale i samych siebie. Wielu z nich uważa bowiem, że gesty naprawdę zmieniają dźwięk. No cóż, dźwięk staje się muzyką tylko w umyśle słuchacza, stąd ruchy zmieniające dźwięk w głowie odbiorcy robią więcej, niż tylko zmieniają percepcję. One ostatecznie zmieniają muzykę.

Share this post


Link to post
Share on other sites

Zawsze uważałem, że odbiór muzyki na żywo jest inny, lepszy nie tylko ze względów akustycznych. Teraz mam naukowe potwierdzenie. :D Muzyka wpływa głównie na emocje, charyzma i ruch wykonawcy mogą ją bardzo podkreślać.

Share this post


Link to post
Share on other sites

Zgadzam się. Do tego dochodzą jeszcze efekty świetlne, ubiory, a nawet wcześniejsza znajomość wykonawców (jak się zachowują poza sceną), również to wpływa na odbiór ich występów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      W jaki sposób mózg decyduje, jak najlepiej poruszać naszym ciałem? Okazuje się, że dla układu nerwowego to spore wyzwanie, gdyż mamy setki mięśni, które muszą być koordynowane setki razy na sekundę, a liczba możliwych wzorców koordynacji, z których musi wybierać mózg, jest większa niż liczba ruchów na szachownicy, mówi profesor Max Donelan z kanadyjskiego Simon Fraser University. Donelan i jego zespół badali, w jaki sposób ciało adaptuje się d nowych ruchów. A ich badania mogą mieć znaczenie zarówno dla treningu sportowców, jak i rehabilitacji niepełnosprawnych.
      Naukowcy zauważają, że bardzo często doświadczamy zmian zarówno w naszym organizmie, jak i w środowisku zewnętrznym. Być może lubisz biegać w niedzielę rano, Twoje mięśnie będą tym bardziej zmęczone im dłuższy dystans przebiegniesz. A może w czasie wakacji biegasz po plaży, gdzie podłoże jest luźne i nierówne w porównaniu z chodnikiem, po którym codziennie chodzisz. Od dawna jesteśmy w stanie rejestrować zmiany w sposobie poruszania się, ale dotychczas chyba nie docenialiśmy, w jaki sposób nasz organizm do takich zmian się adaptuje, stwierdza Donelan.
      Chcąc przyjrzeć się tym zmianom kanadyjscy neurolodzy podjęli współpracę z inżynierami z Uniwersytetu Stanforda, którzy specjalizują się w tworzeniu egzoszkieletów.
      Badania kanadyjsko-amerykańskiego zespołu przyniosły bardzo interesujące wyniki. Okazało się, że system nerwowy, ucząc się wzorców koordynacji nowych ruchów, najpierw rozważa i sprawdza wiele różnych wzorców. Stwierdzono to, mierząc zmienność zarówno samego ruchu ciała jako takiego, jak i ruchów poszczególnych mięśni i stawów. W miarę, jak układ nerwowy adaptuje się do nowego ruchu, udoskonala go, a jednocześnie zmniejsza zmienność. Naukowcy zauważyli, że gdy już nasz organizm nauczy się nowego sposobu poruszania się, wydatek energetyczny na ten ruch spada aż o 25%.
      Z analiz wynika również, że organizm odnosi korzyści zarówno z analizy dużej liczby możliwych wzorców ruchu, jak i ze zmniejszania z czasem liczby analizowanych wzorców. Zawężanie poszukiwań do najbardziej efektywnych wzorców pozwala bowiem na zaoszczędzenie energii.
      Zrozumienie, w jaki sposób mózg szuka najlepszych sposobów poruszania ciałem jest niezwykle ważne zarówno dla ultramaratończyka, przygotowującego się do biegu w trudnym terenie, jak i dla pacjenta w trakcie rehabilitacji po uszkodzeniu rdzenia kręgowego czy wylewu. Na przykład trener, który będzie wiedział, w którym momencie organizm jego podopiecznego zaadaptował się do nowego programu treningowego, będzie wiedział, kiedy można wdrożyć kolejne nowe elementy. A twórcy egzoszkieletów pomagających w rehabilitacji dowiedzą się, w którym momencie można przed pacjentem postawić nowe zadania, bo dobrze opanował wcześniejsze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy postanowił zbadać wpływ hałasu na zwierzęta i ekosystemy morskie. Uczonych zaskoczyło, do jakiego stopnia ludzie zanieczyszczają oceany dźwiękiem, co ma negatywny wpływ na żyjące w nich zwierzęta. Hałas negatywnie wpływa na ich zachowanie, rozmnażanie, zdrowie i może przyczyniać się do śmierci zwierząt.
      Problem jest kolosalny. Na przykład u południowych wybrzeży Chile znajduje się jeden z najważniejszych na południowym Pacyfiku obszarów żerowania płetwali błękitnych. Zwierzęta przybywają tam, by wychowywać młode. Niedawne badania wykazały, że w miesiącach letnich przeciętny płetwal spotyka tam... 1000 łodzi na dobę. Musi więc bez przerwy starać się unikać kolizji, nie mówiąc już o olbrzymim hałasie generowanym przez ich silniki.
      Od czasu rewolucji przemysłowej ludzkość coraz bardziej zanieczyszcza oceany dźwiękiem. Rozwój rybołówstwa, transportu morskiego, turystyki, budowa infrastruktury i wiele innych aktywności H. sapiens powodują, że w światowych oceanach jest coraz więcej sztucznego dźwięku, przez co naturalne odgłosy są coraz słabiej słyszalne.
      Poniżej możemy posłuchać, jak olbrzymia różnica jest pomiędzy naturalnym dźwiękiem oceanu, a dźwiękiem zanieczyszczonym przez człowieka.

      Profesor Carlos M. Duarte z Uniwersytetu Nauki i Technologii im. Króla Abdullaha (KAUST) stanął teraz na czele międzynarodowego zespołu badającego wpływ hałasu na oceany.
      Krajobraz dźwiękowy to silny wskaźnik zdrowia środowiska naturalnego. To, co zrobiliśmy w naszych miastach na lądzie, w których naturalne odgłosy zastąpiliśmy sztucznie generowanym hałasem, zrobiliśmy też w oceanach, mówi Ban Halpern, współautor badań z Narodowego Centrum Analizy Ekologicznej i Syntezy na Uniwersytecie Kalifornijskim w Santa Barbara.
      Nie od dzisiaj wiemy, że niszczymy oceany wprowadzając do nich olbrzymie ilości odpadów, niszcząc wybrzeża i rafy koralowe. Znacznie trudniej jednak zauważyć to, co robimy za pomocą hałasu. Tymczasem może on być niezwykle szkodliwy. Powoduje np. że młode zwierzęta nie słyszą nawoływań rodziców i nie potrafią wrócić do bezpiecznych kryjówek. Tymczasem w projektach ochrony oceanów bardzo rzadko uwzględnia się zanieczyszczenie dźwiękiem.
      Dźwięk w wodzie podróżuje bardzo szybko i bardzo daleko. Nic więc dziwnego, że zwierzęta morskie są bardzo wyczulone na dźwięk. Wykorzystują go w całym szeregu swoich zachowań. Dźwięk odgrywa w oceanach kolosalną rolę. Ludzie wciąż nie doceniają tego aspektu środowiska morskiego, stwierdzają autorzy badań. Nikt z nas nie chciałby mieszkać koło autostrady, bo wiąże się to z ciągłym uciążliwym hałasem. Zwierzęta w oceanie bez przerwy są narażone na olbrzymi hałas.
      Naukowcy z Arabii Saudyjskiej, Danii, USA, Wielkiej Brytanii, Australii, Nowej Zelandii, Holandii, Niemiec, Hiszpanii, Norwegii i Kanady postanowili przeprowadzić dokumentację dźwięków oddziałujących na środowisko morskie na całym świecie. W tym celu przeanalizowali ponad 10 000 prac naukowych na ten temat.
      Głębokie wody oceaniczne są postrzegane przez ludzi – nawet przez specjalistów zajmujących się tym środowiskiem – jako odległe ekosystemy. Jednak gdy wiele lat temu za pomocą hydrofonu słuchałem dźwięków w oceanach, byłem zdumiony, że na głębokości 1000 metrów dominującym dźwiękiem był... dźwięk padającego na powierzchni deszczu. I wtedy zdałem sobie sprawę, jak olbrzymią rolę odgrywa dźwięk w oceanach. W ciągu zaledwie sekundy dociera on z powierzchni na kilometr pod wodę, mówi Duarte.
      Autorzy badań uważają, że w wysiłkach na rzecz ochrony oceanów należy brać pod uwagę hałas generowany przez ludzi. I hałas ten należy zmniejszać. Wiele takich działań można przeprowadzić już teraz i nie byłyby one zbyt skomplikowane. Istnieją np. technologie produkcji cichych silników okrętowych. Powoli się one rozpowszechniają, a wprowadzenie odpowiednich przepisów spowodowałoby ich szybsze wdrożenie i zmniejszenie tym samym hałasu w oceanach.
      Co więcej, tego typu działania odniosłoby natychmiastowy skutek. Gdy np. zanieczyszczamy ocean środkami chemicznymi i przestajemy je stosować, minie wiele lat, gdy środki te przestaną negatywnie oddziaływać na środowisko. W przypadku dźwięku zmniejszenie hałasu natychmiast poprawia sytuację. I środowisko natychmiast reaguje, czego dowodem jest jego szybki odradzanie się w związku ze zmniejszoną aktywnością człowieka spowodowaną COVID-19.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Popularny pogląd mówi, że słuchanie muzyki zwiększa kreatywność. Jednak badania przeprowadzone przez psychologów z brytyjskich University of Central Lancashire, Lancaster University oraz szwedzkiego Uniwersytetu w Gavle pokazują, że wpływ muzyki na kreatywność jest negatywny.
      Osoby biorące udział w eksperymencie zostały postawione przed problemami, których rozwiązanie wymagało kreatywności werbalnej. Jednocześnie w tle puszczano muzykę. Okazało się, że muzyka w tle „znacząco upośledza” zdolność ludzi do wykonania zadań wymagających kreatywności słownej. Co interesujące, takiego negatywnego wpływu nie zauważono, gdy w tle był szum typowy dla biblioteki lub było cicho.
      Na przykład w ramach eksperymentów badanym pokazywano trzy wyrazy (np. dress, dial, flower), a ich zadaniem było znalezienie takiego jednego skojarzonego z nimi wyrazu, który pozwalał na stworzenie innego znanego słowa. W tym przypadku wyrazem takim był „sun”, a tworzone słowa to „sundress”, „sundial” i „sunflower”. Zadanie było wykonywane albo przy odgłosach typowych dla biblioteki, albo gdy w tle puszczano jeden z trzech rodzajów muzyki – muzykę z nieznanym badanym tekstem w obcym języku, muzykę instrumentalną bez śpiewu, muzykę ze znanym tekstem.
      Znaleźliśmy silne dowody na to, że gdy w tle puszczano muzykę to, w porównaniu z ciszą, znacząco ograniczała ona możliwości badanych, mówi doktor Neil McLatchie z Lancaster University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W artykule, opublikowanym właśnie na łamach Physical Review Letters, grupa fizyków wysunęła hipotezę, że fale dźwiękowe... posiadają masę. To zaś by oznaczało, że mogą odczuwać bezpośredni wpływ grawitacji. Uczeni sugerują, że fonony w polu grawitacyjnym mogą posiadać masę. Można by się spodziewać, że zagadnienia z zakresu fizyki klasycznej, takie jak to, są od dawna rozstrzygnięte, mówi główny autor artykułu, Angelo Esposito z Columbia University. Wpadliśmy na to przypadkiem, dodaje.
      W ubiegłym roku Alberto Nicolis z Columbia University i Riccardo Penco z Carnegie Mellon University zasugerowali, że fonony mogą mieć masę w materii nadciekłej. Esposito i jego zespół twierdzą, że efekt ten można obserwować też w innych ośrodkach, w tym w zwykłych płynach, ciałach stałych oraz w powietrzu.
      Mimo, że masa niesiona przez fonon jest niewielka i wynosi około 10-24 grama, może być mierzalna. Jednak, jeśli próbujemy ją zmierzyć, okaże się że jest ona ujemna, zatem fonon będzie „spadał do góry”, czyli oddalał się od źródła grawitacji.
      Gdyby ich masa była dodatnia, opadałyby w dół. Jako, że jest ujemna, opadają w górę, mówi Riccardo Penco. Przestrzeń na jakiej „opadają” jest równie niewielka, co ich masa i zależy od medium, przez który fonon się przemieszcza. W wodzie, gdzie dźwięk przenosi się z prędkością 1,5 kilometra na sekundę, ujemna masa fononu powoduje, że odchylenie wynosi 1 stopień na sekundę. Taki odchylenie bardzo trudno zmierzyć.
      Nie jest to jednak niemożliwe. Zdaniem Esposito można by tego dokonać w ośrodku, w którym dźwięk przemieszcza się bardzo wolno. Wykonanie pomiaru powinno być możliwe np. w nadciekłym helu, gdzie prędkość dźwięku może spaść do kilkuset metrów na sekundę. Alternatywnym sposobem dla poszukiwania miniaturowych skutków przechodzenia fononu przez egzotyczne ośrodki może być szczegółowe badania bardzo intensywnych fal dźwiękowych.
      Z wyliczeń zespołu Esposito wynika, że trzęsienie ziemi o sile 9 stopni powinno uwolnić tyle energii, że zmiana przyspieszenia dźwięku w polu grawitacyjnym powinna być mierzalna za pomocą zegarów atomowych. Co prawda obecnie dostępna technologia nie jest wystarczająco czuła, by wykryć pole grawitacyjne fal sejsmicznych, ale w przyszłości powinno być to możliwe.
      Zanim nie przeczytałem tego artykułu, sądziłem, że fale dźwiękowe nie przenoszą masy, mówi Ira Rothstein z Carnegie Mellon University. To ważne badania, gdyż okazuje się, że w fizyce klasycznej, o której sądzimy, że ją rozumiemy, można znaleźć coś nowego. Wystarczy dokładnie się przyjrzeć, by znaleźć niezbadane obszary.
      Esposito nie wie, dlaczego dotychczas nikt nie wpadł na ten pomysł, co jego zespół. Może dlatego, że zajmujemy się fizyką wysokich energii, więc grawitacja to nasz chleb powszedni. To nie żadne teoretyczne czary-mary. Można było wpaść na to już przed wielu laty.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjalistom z University of Minnesota udało się powstrzymać komórki nowotworowe przed rozprzestrzenianiem się oraz zbadać w jaki sposób zostały one powstrzymane.
      Od lat wiadomo, że komórki nowotworowe rozprzestrzeniają się po określonych trasach. Wykorzystują swoiste „autostrady” do ruchu wewnątrz guza oraz, po jego opuszczeniu, po naczyniach krwionośnych i tkankach. Osoby, u których występuje duża liczba takich „autostrad” mają mniejsze szanse na przeżycie choroby. Dotychczas nie wiedziano, w jaki sposób komórki nowotworowe rozpoznają te drogi i jak się po nich poruszają.
      Uczeni z University of Minnesota badali w warunkach laboratoryjnych sposób przemieszczania się komórek raka piersi i wykorzystywali różne leki, próbując powstrzymać ich ruch. Okazało się, że gdy zaburzyli mechanizm, który zwykle pozwala komórkom na poruszanie się, nagle komórki nowotworowe zaczęły poruszać się jak bezkształtna galaretowata masa.
      Komórki nowotworowe są bardzo podstępne. Nie spodziewaliśmy się, że zmienią sposób poruszania się. To wymusiło na nas zmianę taktyki tak, by jednocześnie zablokować oba rodzaje ruchu. Dopiero wówczas przestały się poruszać i pozostały w miejscu, mowi jeden z autorów badań, profesor Paolo Provenzano.
      Przerzuty są przyczyną śmierci 90% osób umierających na nowotwory. Jeśli udałoby się zablokować ruch komórek, pacjenci i lekarze zyskaliby więcej czasu na wdrożenie skutecznego leczenia.
      Kolejnym krokiem badań będzie rozszerzenie eksperymentów na badania na zwierzętach. Mają nadzieję, że w ciągu kilku lat uda im się rozpocząć badania kliniczne na ludziach. Chcą też badać interakcje leków z komórkami nowotworowymi i ewentualne efekty uboczne.
      Naszym ostatecznym celem jest znalezienie sposobu na całkowite zablokowanie ruchu komórek nowotworowych i zwiększenie ruchliwości komórek układu odpornościowego, by te zwalczały nowotwór, mówi Provenzano.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...