Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Galaktyka uderzyła w Drogę Mleczną

Recommended Posts

Astronomowie informują, że nasza galaktyka zderza się właśnie z inną. W 2008 roku zaobserwowano chmurę wodoru, która zderzyła się z Drogą Mleczną. Najnowsze dane wskazują jednak, że ta chmura sama jest galaktyką.

Chmura Smith nie zaczęła się rozpadać po zderzeniu, a jej trajektoria wskazuje, że to nie jest pierwsze jej gwałtowne spotkanie z naszą galaktyką. Do poprzedniej kolizji doszło około 70 milionów lat temu. Skoro ani wówczas, ani teraz Chmura Smith się nie rozpadła, oznacza, że ma znacznie większą masę niż dotychczas sądzono.

Wcześniej oceniano, że jej masa wynosi około milion razy więcej niż masa Słońca. Najnowsze obliczenia pokazują, że w rzeczywistości jest ona 100-krotnie większa.

Chmura Smith jest karłowatą ciemną galaktyką, a proces jej zderzania się z Drogą Mleczną potrwa całe wieki.

Share this post


Link to post
Share on other sites

Szkoda, że z takich wydarzeń nie można przygotować relacji filmowej, którą można by obejrzeć zamiast telewizyjnej papki ;)

Share this post


Link to post
Share on other sites

I to jest właśnie piękne.

Skala jest tak niewyobrażalnie ogromna, że takie zderzenia trwają miliony lat.

Chciałbym móc znaleźć się 'na zewnątrz' przyśpieszyć czas i z góry popatrzeć na to widowisko.

Share this post


Link to post
Share on other sites

Szkoda, że z takich wydarzeń nie można przygotować relacji filmowej, którą można by obejrzeć zamiast telewizyjnej papki ;)

 

Oby tylko na Discovery, bo znając naszą telewizję, to już by była przez tydzień wrzawa, panika, pytania dlaczego rząd nic z tym nie robi i że to wszystko wina PO/PiS (do wyboru). Do tego co godzinę nowy ekspert w studio i debilne pytania redaktora, oraz półroczna żałoba narodowa. ;]

 

nasza galaktyka zderza się właśnie z inną

 

W sensie teraz czy dlatego, że dopiero teraz jest to obserwowalne? Zawsze mnie ta względność czasu irytuje. :P Z rozmaitych artykułów wynika, że do faktycznego zderzenia i połączenia chmury z Drogą Mleczną dojdzie w ciągu najbliższych 27-40 milionów lat.

 

czy można link dokładny do informacji natywnej ? nie mogę znaleźć tego na Nature.com

 

Też jakoś nie mogę odnaleźć. Jedynie mały fragment jest na http://rst.gsfc.nasa.gov/Sect20/A2a.html i w "external links" z http://en.wikipedia.org/wiki/Smith's_cloud

 

Za źródłami z Science Daily: http://www.nrao.edu/pr/2008/smithscloud/ (z obrazkami na tapetę :D)

Share this post


Link to post
Share on other sites

I to jest właśnie piękne.

Skala jest tak niewyobrażalnie ogromna, że takie zderzenia trwają miliony lat.

Chciałbym móc znaleźć się 'na zewnątrz' przyśpieszyć czas i z góry popatrzeć na to widowisko.

Istnieje pewna możliwość/niemożliwość 8)

Istnieje projekt obliczeń rozproszonych(MilkyWay@home), oparty o platformę BOINC. Ma stworzyć 3D mapkę Drogi Mlecznej. Nie jest to co byś chciał, ale coś blisko ;)

The goal of Milkyway@Home is to use the BOINC platform to harness volunteered computing resources in creating a highly accurate three dimensional model of the Milky Way galaxy using data gathered by the Sloan Digital Sky Survey. This project enables research in both astroinformatics and computer science.

(Milky wkrótce będzie umiało użyć GPU ATI - nie wiem czy rzeczywiście efektywość nowych gpu da wiecej niż staych, ale nowe na pewno mnie prądu zżerają :P )

Share this post


Link to post
Share on other sites

czy można link dokładny do informacji natywnej ? nie mogę znaleźć tego na Nature.com

 

I prawidłowo, że nie możesz tego znaleźć. ;) Dałem ciała w podpisie. To z New Scientista.

Share this post


Link to post
Share on other sites

Hm... Takie kosmiczne zdarzenie nie powinno zostać bez żadnych konsekwencji, chyba że potwierdzone istnienie drugiej galaktyki wiąże się z jej przesunięciem w czasoprzestrzeni.

pozdrawiam

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      W centrum Drogi Mlecznej znajduje się supermasywna czarna dziura o masie 4 milionów mas Słońca. Jest ona spokojna jak na aktywne jądro galaktyki, jednak obserwacje w zakresie promieniowania rentgenowskiego pokazują, że w okolicach czarnej dziury dochodzi do silnych rozbłysków. Ponadto chociaż tempo formowania się gwiazd w tamtym regionie jest od kilkuset milionów lat stabilne, mamy dowody, że czasami dochodzi tam do wysokoenergetycznych epizodów. Teraz na łamach Nature naukowcy donoszą o odkryciu dwóch bąbli emitujących promieniowanie radiowe i znajdujących się nad oraz pod płaszczyzną Galaktyki.
      Rozmiary obu bąbli wynoszą 140x430 parseków, czyli każda z nich rozciąga się na 700 lat świetlnych. Wiek bąbli oceniono na kilka milionów lat, a całkowitą energię na 7x1052 ergów.
      Naszym czytelnikom z pewnością coś to przypomina. Przed 9 laty informowaliśmy o odkryciu tajemniczych bąbli rozciągających się w obu kierunkach od centrum Drogi Mlecznej. Natura Bąbli Fermiego wciąż nie została wyjaśniona. A odkryte właśnie bąble emitujące promieniowanie radiowe nie są tym samym, co Bąble Fermiego. To zupełnie nowa, nieznana dotychczas struktura i jedna z największych istniejących w centrum Drogi Mlecznej.
      Centrum naszej galaktyki jest dość spokojne w porównaniu z innymi galaktykami. Mimo to, nasza centralna czarna dziura może być czasami niezwykle aktywna, rozbłyskając, gdy wchłonie większe ilości pyłu i gazu. Możliwe, że podczas jednego z takich zdarzeń doszło do potężnego rozbłysku, który utworzył te bąble, mówi astrofizyk Ian Heywood z Uniwersytetu w Oksfordzie.
      Na pierwsze ślady nowo odkrytych struktur trafił w latach 80. ubiegłego wieku astronom Farhad Yusef-Zadeh z Northwestern University, który wraz z kolegami zauważył w centrum galaktyki długie, wąskie dobrze zorganizowane i wysoce namagnetyzowane pasma gazu, rozciągające się na dziesiątki lat świetlnych, których szerokość wynosiła zaledwie rok świetlny. Gaz ten emitował promieniowanie synchrotronowe. Podobnych struktur nigdzie indziej nie zaobserwowano.
      W międzyczasie powstał należący do National Radio Astronomy Observatory południowoafrykański teleskop MeerKAT, złożony z 64 anten. Gdy naukowcy nakierowali go na centrum Drogi Mlecznej zauważyli wspomniane bąble emitujące promieniowanie radiowe. Bąble odkryte przez MeerKAT rzucają nowe światło na pochodzenie pasm gazu, mówi Yusef-Zadeh. Niemal wszystkie z ponad 100 takich pasm znajdują się wewnątrz bąbli radiowych.
      Cała nowo odkryta struktura przypomina klepsydrę, ma wyraźnie zaznaczone ostre krawędzie, jest niezwykle symetryczna. To ta symetria oraz całkowita długość struktury wynosząca 1400 lat świetlnych zdradzają kilka szczegółów na temat struktury. Kształt i symetria wskazują, że wydarzenie, które utworzyło tę strukturę miało miejsce przed kilkoma milionami lat w bezpośrednim pobliżu czarnej dziury. Prawdopodobnie doszło do erupcji wywołanej olbrzymią ilością gazu, który wpadł do czarnej dziury lub też masowym formowaniem się gwiazd, co wywołało falę uderzeniową, która przeszła przez centrum galaktyki. Wskutek tego wydarzenia w gorącym zjonizowanym gazie w pobliżu centrum galaktyki doszło do wygenerowania fal radiowych, które możemy obecnie rejestrować, wyjaśnia William Cotton z National Radio Astronomy Observatory.
      Mimo, że bąble radiowe są mniejsze i mają mniej energii niż Bąble Fermiego, nie można wykluczyć, że obie struktury powstały w wyniku podobnych, może nawet połączonych ze sobą, wydarzeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zderzenia jąder ołowiu zachodzą w ekstremalnych warunkach fizycznych. Ich przebieg można opisać za pomocą modelu zakładającego, że przekształcająca się, ekstremalnie gorąca materia – plazma kwarkowo-gluonowa – płynie w postaci setek smug. Dotychczas „ogniste smugi” wydawały się konstrukcjami czysto teoretycznymi. Jednak najnowsza analiza zderzeń pojedynczych protonów wzmacnia tezę, że odpowiada im rzeczywiste zjawisko.
      W 2017 roku fizycy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie przedstawili przemawiający do wyobraźni model zjawisk zachodzących w trakcie zderzeń jąder ołowiu przy wysokich energiach. W modelu założono, że powstająca w zderzeniach egzotyczna materia, plazma kwarkowo-gluonowa, oddala się od miejsca kolizji w formie licznych smug, rozciągniętych wzdłuż pierwotnego kierunku ruchu jąder. Smugi te powinny poruszać się tym szybciej, im bardziej są odległe od osi zderzenia. Obecnie badacze zastosowali model „smug ognistych” do znacznie prostszych zderzeń proton-proton. Gdy porównali swoje przewidywania z danymi zebranymi w eksperymentach w europejskim ośrodku badań jądrowych CERN, czekała ich nie lada niespodzianka.
      Jądra ołowiu zawierają ponad dwieście protonów i neutronów. Gdy dwa tak duże obiekty się zderzają, przy odpowiednio wielkich energiach powstaje płynna mieszanina kwarków i gluonów (cząstek w normalnych warunkach zlepiających kwarki w protony i neutrony). Plazma kwarkowogluonowa błyskawicznie ekspanduje i równocześnie się wychładza. W rezultacie istnieje tak krótko i w tak małym obszarze przestrzeni (o rozmiarach zaledwie setek milionowych części jednej miliardowej metra), że nie potrafimy jej bezpośrednio obserwować. Na dodatek interakcje między cząstkami plazmy są zdominowane przez oddziaływania silne i są tak skomplikowane, że z ich opisem współczesna fizyka po prostu sobie nie radzi. Ślady plazmy kwarkowo-gluonowej widać tylko pośrednio, w cząstkach wybiegających z miejsca zderzenia. Teoria przewiduje bowiem, że jeśli plazma kwarkowo-gluonowa rzeczywiście się wytworzyła, detektory powinny rejestrować wyraźnie większą liczbę cząstek dziwnych (a więc takich, które zawierają kwarki dziwne s).
      Zderzenia proton-proton w akceleratorach w CERN produkują mało cząstek dziwnych. Powszechnie przyjmuje się więc, że w ich trakcie plazma kwarkowo-gluonowa nie powstaje. Uwzględniliśmy ten fakt w naszym modelu smug ognistych, po czym skonfrontowaliśmy jego przewidywania z danymi z eksperymentu NA49 na akceleratorze SPS. Zgodność była zdumiewająco dobra. Można więc powiedzieć, że teraz 'zobaczyliśmy' smugę ognistą w jakościowo innych warunkach fizycznych, tam, gdzie w ogóle się jej nie spodziewaliśmy!, tłumaczy dr hab. Andrzej Rybicki (IFJ PAN), jeden z autorów publikacji w czasopiśmie Physical Review C.
      Kolizję dwóch jąder ołowiu musieliśmy modelować jako złożenie kilkuset smug. W takich warunkach trudno powiedzieć cokolwiek o własnościach pojedynczej smugi. Jednak gdy z modelu wyekstrahowaliśmy rozkład pospieszności, czyli relatywistycznej prędkości cząstek produkowanych przez pojedynczą smugę, okazało się, że jej kształt bardzo dobrze opisuje prawdziwe dane z pomiarów produkcji cząstek w zderzeniach proton-proton!, precyzuje mgr Mirek Kiełbowicz, doktorant IFJ PAN.
      Aby wykresy, otrzymane za pomocą modelu smug ognistych zbudowanego dla zderzeń jąder ołowiu, zgadzały się z danymi eksperymentalnymi dla zderzeń proton-proton, należało je przeskalować o czynnik 0,748. Krakowscy badacze wykazali, że parametr ten nie jest swobodny. Pojawia się on po uwzględnieniu w bilansie energetycznym zmian związanych z różną produkcją cząstek dziwnych i można go odtworzyć z danych eksperymentalnych. Był to kolejny silny argument wzmacniający fizyczną poprawność modelu.
      Pracuję nad modelem smug ognistych w ramach mojej pracy magisterskiej, więc nie zdziwiło mnie, że opisuje on dane ze zderzeń jądro-jądro w sporym zakresie energii. Kiedy jednak zobaczyłem, że wyekstrahowana przez nas funkcja fragmentacji tak dobrze zgadza się z danymi ze zderzeń proton-proton, trudno było ukryć zaskoczenie, wspomina Łukasz Rozpłochowski, student Uniwersytetu Jagiellońskiego współpracujący z grupą z IFJ PAN.
      Materia powstająca w zderzeniach proton-proton, chłodniejsza i jakościowo inna niż plazma kwarkowo-gluonowa, wydaje się więc zachowywać jak pojedyncza ognista smuga. Jej pewne własności – takie jak prędkości emitowanych cząstek czy sposoby ich rozpadów – z jakiegoś powodu są zdumiewająco podobne do własności ognistych smug plazmy kwarkowo-gluonowej. A ponieważ plazma kwarkowo-gluonowa tworzy się przy większych energiach i w zderzeniach obiektów kwantowych o dużej złożoności, uprawnione staje się stwierdzenie, że to ona dziedziczy niektóre cechy materii formującej ogniste smugi w zderzeniach proton-proton.
      Gdy opisywaliśmy zderzenia jądro-jądro, ogniste smugi były dla nas jedynie pewnymi abstrakcyjnymi konstrukcjami, czymś czysto teoretycznym. Nie wnikaliśmy w ich fizyczną naturę, w to, czym mogą być w rzeczywistości. Przeżyliśmy prawdziwy wstrząs, gdy zestawiając dane eksperymentalne z naszym modelem odkryliśmy, że to, co powstaje w zderzeniach proton-proton, zachowuje się dokładnie tak jak nasza pojedyncza ognista smuga, podsumowuje dr Rybicki.
      Wyniki najnowszej analizy, przeprowadzonej przez krakowskich fizyków w ramach grantu SONATA BIS nr 2014/14/E/ST2/00018 Narodowego Centrum Nauki, wzmacniają zatem przypuszczenie, że ognistym smugom, wedle teorii formującym się w zderzeniach proton-proton i jądro-jądro, odpowiadają rzeczywiste procesy fizyczne zachodzące w przepływach ekstremalnie gorącej materii kwantowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nie wszystkie gwiazdy Drogi Mlecznej są z nią związane siłami, które gwarantują ich pozostanie w galaktyce. Naukowcy znają już kilkadziesiąt gwiazd hiperprędkościowych, czyli takich, które poruszają się z na tyle dużą prędkością, iż w końcu wylecą poza Drogę Mleczną.
      Jeszcze do niedawna jedynymi znanymi gwiazdami hiperprędkościowymi były błękitne olbrzymy, które wywodziły się z centrum galaktyki. Tam zostały przyspieszone przez czarną dziurę. Przed pięciu laty informowaliśmy o odkryciu nowej kategorii gwiazd hiperprędkościowych. To obiekty mniej więcej wielkości Słońca, które prawdopodobnie nie pochodzą z centrum galaktyki, zatem mechanizm ich przyspieszenia musiał być inny niż obecność czarnej dziury.
      LAMOST-HVS to najbliższa Słońcu gwiazda hiperprędkościowa. Naukowcom z University of Michigan udało się, dzięki użyciu Teleskopu Magellana i satelity Gaia, prześledzić trasę, jaką przez ostatnie 33 miliony lat przebyła ta gwiazda. Obecnie porusza się ona z prędkością 568 km/s (2 044 800 km/h).
      Jedna z teorii mówiąca o powstawaniu gwiazd hiperprędkościowych zakłada, że to pozostałości układu podwójnego, który znalazł się zbyt blisko czarnej dziury. Ta wchłonęła jedną z gwiazd, a drugą przyspieszyła do prędkości pozwalającej na wyrwanie się z objęć grawitacyjnych galaktyki.
      Jednak gdy prześledzono trasę LAMOST-HVS okazało się, że w ciągu ostatnich 33 milionów lat nie zbliżyła się ona nawet do czarnej dziury. Musiało przyspieszyć ją coś innego.
      Do wyrzucenia gwiazdy z galaktyki potrzebne jest niezwykle silne oddziaływanie grawitacyjne. Autorzy najnowszych badań uważają, że może ono zostać wytworzone przez gromadę gwiazd, w której znajduje się co najmniej kilkanaście gwiazd o masie co najmniej 30 mas Słońca. Jeśli LAMOST-HVS znalazła się blisko takiej gromady, mogła zostać przyspieszona do hiperprędkości. Alternatywnym rozwiązaniem byłoby spotkanie z czarną dziurę o masie około 100 mas Słońca.
      Czarne dziury o tak niewielkiej masie są od dawna przedmiotem spekulacji i poszukiwań. Dotychczas przeprowadzono kilka obserwacji, które mogłyby potwierdzać ich istnienie, jednak wciąż brak jednoznacznych dowodów. Jednak uważa się, że takie czarne dziury mogą powstawać w masywnych gromadach gwiazd, takich, jaka mogła przyspieszyć LAMOST-HVS.
      Naukowcy, którzy prześledzili historię LAMOST-HVS stwierdzili, że tam, gdzie gwiazda znajdowała się przed 33 milionami lat nie widać żadnej masywnej gromady gwiazd. Jednak taka gromada z łatwością mogłaby zostać przesłonięta przez pył, więc fakt, że niczego tam nie widzimy, nie oznacza, że niczego tam nie ma. Badania wykazały, że gwiazda pochodzi z Ramienia Węgielnicy, które trudno jest obserwować z Ziemi. Jeśli udałoby się zaobserwować tam gromadę gwiazd, być może zdobylibyśmy dowody na istnienie niewielkich czarnych dziur.
      Tak czy inaczej, pewne jest, że LAMOST-HVS została przyspieszona przez coś innego niż Saggitarius A* w centrum galaktyki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Droga Mleczna zderzy się z inną galaktyką znacznie wcześniej, niż dotychczas przewidywano. Jak informowaliśmy, za około 4 miliardy lat dojdzie do zderzenia Drogi Mlecznej i Andromedy. Naukowcy z Durham University poinformowali właśnie, że wcześniej dojdzie do innego zderzenia, uderzy w nas Wielki Obłok Magellana. Po tej kolizji Droga Mleczna może zacząć przypominać inne galaktyki spiralne.
      Nasza galaktyka nie jest typową galaktyką spiralną. Jeśli przyjrzymy się jej rozmiarom, to okaże się, że jej czarna dziura jest o rząd wielkości zbyt mała. W halo Drogi Mlecznej znajduje się znacznie mniej ciężkich pierwiastków, niż w halo innych galaktyk spiralnych. W końcu zaś, największa galaktyka satelitarna Drogi Mlecznej – Wielki Obłok Magellana – jest niezwykle duża.
      Badacze z Durham University odkryli, że Wielki Obłok Magellana jest bardziej masywny, niż się dotychczas wydawało i z powodu swojej olbrzymiej masy skręca właśnie w stronę Drogi Mlecznej. Do zderzenia dojdzie za około 2,4 miliarda lat.
      W wyniku zderzenie może zostać obudzony Saggitarius A*, czyli czarna dziura naszej galaktyki. Powiększy się ona nawet 10-krotnie, pochłaniając otaczającą ją materię. A im bardziej gwałtowny będzie to proces, tym więcej promieniowania będzie emitowane z okolic czarnej dziury. Promieniowanie to nie powinno zaszkodzić życiu na Ziemi, o ile jeszcze będzie ono istniało. Jednak zagrożeniem dla Układu Słonecznego może być sama kolizja. O ile zderzenia z galaktyką Andromedy Układ Słoneczny nie odczuje, to istnienie minimalne ryzyko, że w wyniku kolizji z Wielkim Obłokiem Magellana Słońce i jego planety zostaną wyrzucone w przestrzeń kosmiczną.
      Wielki Obłok Magellana to najjaśniejsza galaktyka satelitarna Drogi Mlecznej. Znalazła się ona w naszym sąsiedztwie zaledwie 1,5 miliarda lat temu i znajduje się w odległości około 163 000 lat świetlnych od naszej galaktyki. Jeszcze do niedawna naukowcy sądzili, że albo będzie krążyła wokół Drogi Mlecznej przez kolejne miliardy lat, albo uwolni się od jej towarzystwa grawitacyjnego i się od nas oddali.
      Najnowsze pomiary wskazują jednak, że Wielki Obłok Magellana zawiera dwukrotnie więcej ciemnej materii niż sądzono. Galaktyka szybko traci energię i wchodzi na kurs kolizyjny z Drogą Mleczną, co może mieć katastrofalne skutki dla Układu Słonecznego. Możemy nie wyjść z tego cało. Istnieje niewielkie ryzyko, że wskutek kolizji Układ Słoneczny zostanie wyrzucony z Drogi Mlecznej i będzie błąkał się w przestrzeni kosmicznej, mówi główny autor najnowszych badań, doktor Marius Cautun z Instytutu Kosmologii Obliczeniowej Durham University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem międzynarodowego zespołu astronomów w Drodze Mlecznej znajduje się co najmniej 100 miliardów planet. Takie wyniki uzyskano na podstawie szczegółowych analiz dotyczących trzech planet pozasłonecznych.
      Naukowcy doszli do wniosku, że średnio na jedną gwiazdę w naszej galaktyce przypada jedna planeta. Jeśli mają rację, to w odległości 50 lat świetlnych od Ziemi powinno znajdować się co najmniej 1500 planet.
      Co więcej uczeni twierdzą, że planet wielkości Ziemi jest ponad 10 miliardów.
      Wyniki badań prowadzonych za pomocą trzech głównych technik, w tym za pomocą mikrosoczewkowania grawitacyjnego dają podobne wyniki - planety nie tylko są czymś powszechnym w naszej galaktyce, ale mniejszych planet jest więcej niż większych. To zachęca do poszukiwania zamieszkanych planet - mówi Stephen Kane z Exoplanet Science Institute na Caltechu (California Institute of Technology).
      Obecne badania przeprowadzono niezależnie od badań Takahiro Sumiego z Osaka University, który twierdzi, że istnieją setki miliardów planet o orbitach większych od orbity Saturna lub poruszających się poza orbitami gwiazd.
×
×
  • Create New...