Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Ogniwa słoneczne są tym bardziej wydajne, im dłużej wystawimy je na działanie Słońca. To jednak zmienia w ciągu dnia swoją pozycję. Konieczne jest zatem stosowanie silników pozycjonujących panele słoneczne bądź układów optycznych, zapewniający ciągły dopływ światła.

Na University of Illinois powstały ogniwa o sferycznych kształtach, dzięki którym można będzie zrezygnować z silników i optyki, a promienie słoneczne zawsze do nich dotrą. Jeśli testy wykażą ich przydatność, mogą one zastąpić tradycyjne płaskie ogniwa, a jednocześnie ich produkcja nie będzie droga, gdyż małe sferyczne ogniwa łączone w duże macierze wymagają użycia mniejszej ilości materiału.

Dotychczas nie produkowano ogniw o powierzchniach sferycznych, gdyż współczesne techniki litograficzne najlepiej sprawdzają się na płaskich powierzchniach. Zespół z Univesity of Illinois poradził sobie z tym problemem dzięki technice samodzielnego dostosowywania kształtu z płaskich powierzchni.

Naukowcy zaczęli od litograficznej obróbki cienkiej płaskiej warstwy krzemu. Następnie wycięli z niego formę o kształcie kwiatu. Na środku przykleili kawałek szkła, który pomagał zachować nadaną formę. W środek "kwiatu" wpuścili kroplę wody. Gdy ta parowała, napięcie powierzchniowe spowodowało, że "płatki" krzemu się uniosły, tworząc sferę.

Jak mówi profesor Ralph Nuzzo, szef zespołu badawczego, największą trudnością jest opracowanie kolejnych etapów produkcji tak, by uzyskać wymagany kształt. Uczeni stworzyli więc liczne modele matematyczne opisujące, co należy zrobić, by krzem przybierał różne kształty, jak reaguje on na obecność wody i w jaki sposób należy wodę wzbogacić środkami chemicznymi, by w pożądany sposób oddziaływała na krzem.

Zespół Nuzzo otrzymał w opisany powyżej sposób cały zestaw mikroskopijnych sferycznych ogniw słonecznych. Pierwsze testy wykazały, że ich wydajność wynosi zaledwie 1%. To niewiele jak na ogniwa, jednak, co warto podkreślić, to lepszy wynik niż można uzyskać z płaskich ogniw wyprodukowanych przy użyciu takiej samej technologii i tej samej ilości materiału. To z kolei oznacza, że po ulepszeniu nowa technika może okazać się lepsza od obecnie stosowanych.

Jednak jej zalety nie ograniczają się do krzemu. Za jej pomocą można zginać też inne materiały. Zginanie jest bardzo interesujące, gdyż pozwala uzyskać fantastyczne trójwymiarowe kształty - stwierdził profesor George Barbastathis z MIT-u.

Share this post


Link to post
Share on other sites

Nie jestem ekspertem, ale nie wydaje mi się, żeby ten wynalazek miał większą przyszłość. Produkcja energii elektrycznej jest przecież największa przy padaniu światła pod kątem 90 stopni. W przypadku sfery optymalny kąt padania będzie więc miał bardzo mały wycinek całego ogniwa.

 

IMHO zwykłe silniki są znacznie lepszym rozwiązaniem. Niedawno widziałem też artykuł o prototypie układu pozycjonującego, który samodzielnie, na zasadzie rozszerzalności cieplnej, ustawia się prostopadle do promieni słonecznych. Wg mnie właśnie tu warto szukać, choć jak zawsze podkreślam, że inżynierem nie jestem ;)

Share this post


Link to post
Share on other sites

@mikroos: nie bierzesz pod uwagę całkowitych kosztów i zysków. Koszt ogniwa z dowolnym mechanizmem pozycjonowania będzie zawsze wyższy, niż ogniwa bez takiego systemu.

 

Jeżeli dobrze zrozumiałem ideę, to te nowe ogniwa są niewielkie, więc można ich umieścić na tym samym terenie znacznie więcej, niż dużych, pozycjonowanych mechanicznie. Dzięki temu zwiększy się powierzchnia, na która światło będzie padać pod kątem 90 stopni (będzie i tak mniejsza, niż przy pozycjonowaniu mechanicznym, ale odpada sporo kosztów związanych z elementami mechanicznymi systemu).

Share this post


Link to post
Share on other sites
Koszt ogniwa z dowolnym mechanizmem pozycjonowania będzie zawsze wyższy, niż ogniwa bez takiego systemu.

A jak myślisz, ile będzie kosztowała produkcja precyzyjnie uformowanej powierzchni? I ile stracisz na energii? Jeśli chodzi o mechanizm, wystarczy prosty silnik krokowy połączony z timerem. Raczej nie wymaga to rekordowych nakładów.

Jeżeli dobrze zrozumiałem ideę, to te nowe ogniwa są niewielkie, więc można ich umieścić na tym samym terenie znacznie więcej, niż dużych, pozycjonowanych mechanicznie.

Prawda, ale w jednostce czasu ciągle tylko malutki wycinek tej matrycy będzie ustawiony optymalnie.

Share this post


Link to post
Share on other sites

Kiedyś była informacja o ogniach słonecznych wykonanych ze splątanych nanorurek, miały tą zaletę, że niezależnie od kąta padania światła absorbowały praktycznie taką samą ilość promieni słonecznych, a żeby było jeszcze ciekawiej - ilość generowanego prądu była większa niż w tradycyjnych ogniwach o podobnej powierzchni ogniwa. (splątane nanorurki tworzyły trójwymiarową strukturę w której grzęzły promienie świetlne a niewiele ich się odbijało) problemem były koszty produkcji, która jak zapowiadali miała być dopracowana i obniżona...

 

Chyba to najlepsza droga rozwoju na tą chwilę. Jednak może w tym newsie chodzi bardziej o pokrywanie panelami dużych zaokrąglonych powierzchni? (dach opływowego samochodu, jego wyprofilowany spoiler, maskę i klapę bagażnika? Bo w chwili obecnej przyklejanie do nich płaskich paneli wygląda niezbyt atrakcyjnie, i wali w oczy prowizorką... jak by zrobić np. światłoczuły lakier do samochodu ?

Share this post


Link to post
Share on other sites

Jak to nikt a to nie wpadł ? Widziałem jakichś ludzi w telewizji co się o to potykali, chyba Orły jakieś czy coś... ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z MIT opracowali kwantowy „ściskacz światła”, który redukuje szum kwantowy w laserach o 15%. To pierwszy taki system, który pracuje w temperaturze pokojowej. Dzięki temu możliwe będzie wyprodukowanie niewielkich przenośnych systemów, które będzie można dobudowywać do zestawów eksperymentalnych i przeprowadzać niezwykle precyzyjne pomiary laserowe tam, gdzie szum kwantowy jest obecnie poważnym ograniczeniem.
      Sercem nowego urządzenia jest niewielka wnęka optyczna znajdująca się w komorze próżniowej. We wnęce umieszczono dwa lustra, z których średnia jednego jest mniejsza niż średnica ludzkiego włosa. Większe lustro jest zamontowane na sztywno, mniejsze zaś znajduje się na ruchomym wsporniku przypominającym sprężynę. I to właśnie kształt i budowa tego drugiego, nanomechanicznego, lustra jest kluczem do pracy całości w temperaturze pokojowej. Wpadające do wnęki światło lasera odbija się pomiędzy lustrami. Powoduje ono, że mniejsze z luster, to na wsporniku zaczyna poruszać się w przód i w tył. Dzięki temu naukowcy mogą odpowiednio dobrać właściwości kwantowe promienia wychodzącego z wnęki.
      Światło lasera opuszczające wnękę zostaje ściśnięte, co pozwala na dokonywanie bardziej precyzyjnych pomiarów, które mogą przydać się w obliczeniach kwantowych, kryptologii czy przy wykrywaniu fal grawitacyjnych.
      Najważniejszą cechą tego systemu jest to, że działa on w temperaturze pokojowej, a mimo to wciąż pozwala na dobieranie parametrów z dziedziny mechaniki kwantowej. To całkowicie zmienia reguły gry, gdyż teraz będzie można wykorzystać taki system nie tylko w naszym laboratorium, które posiada wielkie systemy kriogeniczne, ale w laboratoriach na całym świecie, mówi profesor Nergis Mavalvala, dyrektor wydziału fizyki w MIT.
      Lasery emitują uporządkowany strumień fotonów. Jednak w tym uporządkowaniu fotony mają pewną swobodę. Przez to pojawiają się kwantowe fluktuacje, tworzące niepożądany szum. Na przykład liczba fotonów, które w danym momencie docierają do celu, nie jest stała, a zmienia się wokół pewnej średniej w sposób, który jest trudny do przewidzenia. Również czas dotarcia konkretnych fotonów do celu nie jest stały.
      Obie te wartości, liczba fotonów i czas ich dotarcia do celu, decydują o tym, na ile precyzyjne są pomiary dokonywane za pomocą lasera. A z zasady nieoznaczoności Heisenberga wynika, że nie jest możliwe jednoczesne zmierzenie pozycji (czasu) i pędu (liczby) fotonów.
      Naukowcy próbują radzić sobie z tym problemem poprzez tzw. kwantowe ściskanie. To teoretyczne założenie, że niepewność we właściwościach kwantowych lasera można przedstawić za pomocą teoretycznego okręgu. Idealny okrąg reprezentuje równą niepewność w stosunku do obu właściwości (czasu i liczby fotonów). Elipsa, czyli okrąg ściśnięty, oznacza, że dla jednej z właściwości niepewność jest mniejsza, dla drugiej większa.
      Jednym ze sposobów, w jaki naukowcy realizują kwantowe ściskanie są systemy optomechaniczne, które wykorzystują lustra poruszające się pod wpływem światła lasera. Odpowiednio dobierając właściwości takich systemów naukowcy są w stanie ustanowić korelację pomiędzy obiema właściwościami kwantowymi, a co za tym idzie, zmniejszyć niepewność pomiaru i zredukować szum kwantowy.
      Dotychczas optomechaniczne ściskanie wymagało wielkich instalacji i warunków kriogenicznych. Działo się tak, gdyż w temperaturze pokojowej energia termiczna otaczająca system mogła mieć wpływ na jego działanie i wprowadzała szum termiczny, który był silniejszy od szumu kwantowego, jaki próbowano redukować. Dlatego też takie systemy pracowały w temperaturze zaledwie 10 kelwinów (-263,15 stopni Celsjusza). Tam gdzie potrzebna jest kriogenika, nie ma mowy o niewielkim przenośnym systemie. Jeśli bowiem urządzenie może pracować tylko w wielkiej zamrażarce, to nie możesz go z niej wyjąć i uruchomić poza nią, wyjaśnia Mavalvala.
      Dlatego też zespół z MIT pracujący pod kierunkiem Nancy Aggarval, postanowił zbudować system optomechaczniczny z ruchomym lustrem wykonanym z materiałów, które absorbują minimalne ilości energii cieplnej po to, by nie trzeba było takiego systemu chłodzić. Uczeni stworzyli bardzo małe lustro o średnicy 70 mikrometrów. Zbudowano je z naprzemiennie ułożonych warstw arsenku galu i arsenku galowo-aluminowego. Oba te materiały mają wysoce uporządkowaną strukturę atomową, która zapobiega utratom ciepła. Materiały nieuporządkowane łatwo tracą energię, gdyż w ich strukturze znajduje się wiele miejsc, gdzie elektrony mogą się odbijać i zderzać. W bardziej uporządkowanych materiałach jest mniej takich miejsc, wyjaśnia Aggarwal.
      Wspomniane wielowarstwowe lustro zawieszono na wsporniku o długości 55 mikrometrów. Całości nadano taki kształt, by absorbowała jak najmniej energii termicznej. System przetestowano na Louisiana State University. Dzięki niemu naukowcy byli w stanie określić kwantowe fluktuacje liczby fotonów względem czasu ich przybycia do lustra. Pozwoliło im to na zredukowanie szumu o 15% i uzyskanie bardziej precyzyjnego „ściśniętego” promienia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas Fifth International Symposium on Networks-on-Chip 2011 specjaliści z MIT-u zdobyli nagrodę za najlepsze opracowanie naukowe symulatora układu scalonego. Ich program Hornet modeluje działanie wielordzeniowego procesora znacznie lepiej niż inne tego typu oprogramowanie. Potrafił znaleźć w oprogramowaniu błędy, których inne symulatory nie zauważyły.
      Teraz Hornet został znakomicie udoskonalony i wyposażony w nowe funkcje. Jego nowa wersja potrafi symulować zużycie energii, komunikację między rdzeniami, interakcję pomiędzy CPU a pamięcią oraz obliczyć czas potrzebny na wykonanie poszczególnych zadań.
      Symulatory są niezwykle ważne dla firm produkujących układy scalone. Zanim przystąpi się do produkcji kości przeprowadzane są liczne testy ich działania na symulatorach.
      Dotychczasowe symulatory przedkładały szybkość pracy nad dokładność. Nowy Hornet pracuje znacznie wolniej niż jego starsze wersje, jednak dzięki temu pozwala na symulowanie 1000-rdzeniowego procesora z dokładnością do pojedynczego cyklu. Hornet jest nam w stanie wyliczyć, że ukończenie konkretnego zadania będzie np. wymagało 1.223.392 cykli - mówi Myong Cho, doktorant z MIT-u.
      Przewaga Horneta nad konkurencją polega też na tym, że inne symulatory dobrze oceniają ogólną wydajność układu, mogą jednak pominąć rzadko występujące błędy. Hornet daje większą szansę, że zostaną one wyłapane.
      Podczas prezentacji Cho, jego promotor profesor Srini Devadas i inni studenci symulowali na Hornecie sytuację, w której wielordzeniowy procesor korzysta z nowej obiecującej techniki przetwarzania danych pacjentów. Hornet zauważył, że niesie ona ze sobą ryzyko wystąpienia zakleszczenia, czyli sytuacji, w której różne rdzenie, aby zakończyć prowadzone obliczenia, czekają nawzajem na dane od siebie. Powoduje to, że zadania nie mogą być zakończone, gdyż rdzenie nawzajem siebie blokują. Żaden inny symulator nie zasygnalizował tego problemu. Hornet pozwolił też na przetestowanie zaproponowanego przez naukowców sposobu na uniknięcie zakleszczenia.
      Zdaniem jego twórców Hornet, ze względu na swoje powolne działanie, posłuży raczej do symulowania pewnych zadań, a nie działania całych aplikacji. Przyda się zatem tam, gdzie zajdzie potrzeba upewnienia się, czy nie występują żadne nieprawidłowości czy też do statystycznego zbadania możliwości wystąpienia błędów.
    • By KopalniaWiedzy.pl
      Studenci najsłynniejszej uczelni technicznej świata - MIT-u (Massachusetts Institute of Technology) - mogą otrzymać od władz uczelni certyfikat ukończenia kursu... piractwa. I nie chodzi tutaj o piractwo komputerowe, a to prawdziwe, morskie.
      Uczelnia postanowiła uczynić oficjalnym zwyczaj, który był praktykowany przez jej studentów przez co najmniej 20 lat. MIT wymaga, by uczący się ukończyli w czasie studiów co najmniej 4 różne kursy wychowania fizycznego. Teraz ci, którzy z powodzeniem ukończą strzelanie z pistoletu, łuku, żeglarstwo i szermierkę otrzymają oficjalny certyfikat
      Carrie Sampson Moore, dziekan wydziału wychowania fizycznego, mówi, że co roku kontaktowali się z nią studenci, prosząc o wydanie zaświadczenia o ukończeniu kursu pirata. Zawsze mówiłam im, że to inicjatywa studencka i byli bardzo rozczarowani - stwierdziła Moore.
      Od początku bieżącego roku postanowiono, że uczelnia zacznie wydawać oficjalne certyfikaty. Drukowane są one na zwoju pergaminu z równą starannością jak inne uczelniane dyplomy. Właśnie otrzymało je czterech pierwszych piratów, a w kolejce czekają następni.
      Mimo, iż cała ta historia może brzmieć niepoważnie, to certyfikat i warunki jego uzyskania są traktowane przez uczelnię całkiem serio. Przyszli piraci nie mogą liczyć na żadną taryfę ulgową, a otrzymanie świadectwa ukończenia kursu wiąże się ze złożeniem przysięgi. Stephanie Holden, która znalazła się w czwórce pierwszych piratów, zdradziła, że musiała przysiąc, iż ucieknie z każdej bitwy, której nie będzie mogła wygrać i wygra każdą bitwę, z której nie będzie mogła uciec.
    • By KopalniaWiedzy.pl
      Jak dowiadujemy się z książki Case, Argument Structure and Word Order autorstwa profesora Shigeru Miyagawy, lingwisty z MIT-u, języki są znacznie bardziej podobne, niż się nam wydaje.

      W języku angielskim znalezienie dopełnienia bliższego jest stosunkowo proste. Występuje ono zaraz przy czasowniku. W zdaniu „I gave a book to Mary“ (Dałem książkę Marysi) dopełnienie bliższe „book“ znajdziemy przy czasowniku „gave“, a dopełnienie dalsze „Mary“ jest od niego oddalone. Inaczej jednak ma się sprawa z językiem japońskim, którego szyk jest znacznie bardziej luźny. Tam dopełnienie bliższe oznaczone jest przyrostkiem -o. W zdaniu „Taroo-wa hon-o kinoo katta“ porządek wyrazów jest następujący - „Taro książkę wczoraj kupił“. „Książka“ (hon-o) jest dopełnieniem bliższym, jednak nie sąsiaduje ono z wyrazem „kupił“ (katta).

      Dla kogoś uczącego się języka, szczególnie gdy w jego rodzinnym języku szyk zdania jest bardziej sztywny niż w japońskim, może być to poważnym problemem. Japoński i angielski wydają się bardzo różnić od siebie. Jednak profesor Miyagawa dowodzi, że z punktu widzenia lingwisty różnice nie są aż tak wielkie.

      Mamy do czynienia z interesującym napięciem pomiędzy różnicami a podobieństwami. Ludzkie języki są zadziwiająco różne. Każdy z nich ma unikalne właściwości odróżniające go od 6500 czy 7000 innych języków. Jeśli jednak spojrzymy na nie z punktu widzenia lingwisty zauważymy, że istnieją właściwości wspólne wszystkim językom.

      Uczony wykazuje w swojej książce, że pomiędzy angielskim a japońskim następuje rodzaj pewnej wymiany. Japoński i angielski przyjmują reguły, które drugi język porzucił. Miyagawa zauważył, że w VIII i IX wieku w japońszczyźnie przyrostek -o nie był używany na oznaczenie dopełnienia bliższego. Używano go do oznaczania emfazy. W tym samym czasie język angielski używał znaków gramatycznych (takich jak obecny dopełniacz saksoński) na oznaczenie dopełnienia bliższego występującego w bierniku. Ponadto szyk zdania był znacznie bardziej luźny niż we współczesnym angielskim. Dopełnienie bliższe mogło pojawić się w wielu miejscach zdania.

      Patrząc z punktu widzenia gramatyki stary japoński jest jak współczesny angielski. A stary angielski i łacina są jak współczesny japoński, stwierdza Miyagawa. Do takiej „wymiany zasad“ pomiędzy japońskim a angielskim dochodziło, gdy języki te nie miały ze sobą żadnej styczności, zatem nie można zjawiska tego tłumaczyć wzajemnym wpływem.

      Znalezienie takich wzorców jest bardzo trudne. Wiele z nich wymaga bowiem szczegółowych wieloletnich badań. Profesor Miyagawa zawarł w książce wyniki swojej 30-letniej pracy naukowej oraz przegląd prac innych autorów. Jego spostrzeżenia zostały wzmocnione niedawno opublikowaną pracą Yuko Yanagidy z Tsukuba University. Również ona zauważyła, że w starym japońskim występuje sposób oznaczania dopełnienia bliższego, który jest podobny do metody używanej czasem we współczesnym angielskim. W jednej z fraz występuje bowiem połączenie dopełnienia bliższego i czasownika „tuki-sirohu“, co przypomina np. współczesne angielskie „bird-watching“, a podobną konstrukcję można znaleźć w języku Czukczów „qaa-tym-ge“..

      Szczególnie zadowoleni z książki Miyagawy są lingwiści badający ewolucję języków. Niezbyt wiele języków zachowało historyczne zapiski i tylko niektóre z nich przydają się do badania zmian. Większość takich jeżyków to języki indoeuropejskie. Dobrze przeprowadzona analiza zmian w języku japońskim jest zatem niezwykle cenna - powiedział David Lightfood z Georgetown University.

      Miyagawa zauważył też inne podobieństwa. Na przykład w języku japońskim występuje, podobnie jak i w angielskim tzw. „efekt blokujący“. Polega on na tym, że np. w angielskim można zastąpić wyraz „curious“ wyrazem „curiosity“, ale nie można zastąpić wyrazu „glorious“ słowem „gloriosity“. Dzieje się tak, gdyż istnieje wyraz „glory“. W japońskim efekt blokujący występuje na bardzo szeroką skalę. Nikt jednak nie przeprowadził wcześniej takiego porównania - mówi Miyagawa.

      Pracę profesora chwali też John Whitman z Cornell University. Lingwiści mają tendencję do myślenia, że ich własny język zawsze stosował się do tych samych podstawowych reguł. Ale Shigeru Miyagawa wykazał, że japoński sprzed 1000 lat był różny od współczesnego języka - mówi. Jego zdaniem kolejnym krokiem w tego typu badaniach powinno być podzielenie badanych okresów na mniejsze części. Miyagawa pokazał zmiany na przestrzeni setek lat. Warto byłoby zobaczyć, jak zmienia się język np. co 50 lat.
       
    • By KopalniaWiedzy.pl
      Massachusetts Institute of Technology (MIT) najsłynniejsza uczelnia techniczna świata uruchamia pierwszy z ogólnodostępnych bezpłatnych kursów, z których będzie można korzystać w ramach opisywanego przez nas projektu MITx. Od dzisiaj na stronie mitx.mit.edu można zapisywać się na kurs 6.002x (Obwody i elektronika), który będzie prowadzony od 5 marca do 8 czerwca bieżącego roku.
      Uczestnicy kursu będą brali udział w wykładach dyrektora Laboratorium Nauk Komputerowych i Sztucznej Inteligencji profesora Ananta Agarwala, który w swojej pracy badawczej skupia się na zagadnieniach przetwarzania równoległego oraz chmur obliczeniowych i jest współzałożycielem wielu firm, w tym producenta wielordzeniowych procesorów - Tilera. Wykłady będzie prowadził też profesor Gerald Sussman, autor książki „Structure and Interpretation of Computer Programs“ uznawanej za jeden z najlepszych podręczników akademickich. Sussman jest też twórcą języka programowania Scheme, a jako naukowiec skupia się na zagadnieniach od sztucznej inteligencji, fizyki, układów chaotycznych po projektowanie superkomputerów. Trzecim wykładowcą będzie doktor Piotr Mitros, który pracował jako projektant w firmach Texas Instruments, Talking Lights oraz Rhytmia Medical.
      Kurs 6.002x posłuży do przetestowania platformy udostępniania online’owych wykładów oraz udoskonalania wykorzystywanych narzędzi.
      Pod koniec kursu uczestnicy spełniający określone kryteria otrzymają bezpłatny certyfikat jego ukończenia.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...