Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Mięśnie pod nadzorem fMRI

Rekomendowane odpowiedzi

Naukowcy z amerykańskiej firmy Diagnosoft zaprezentowali nowy rodzaj oprogramowania dla aparatów do diagnostyki z wykorzystaniem funkcjonalnego rezonansu magnetycznego (fMRI). Dzięki nowej technologii możliwe staje się badanie kolejnych etapów skurczu mięśni i identyfikowanie odcinków, na których nie funkcjonują one prawidłowo.

Aplikacja, nazwana SENC (od ang. strain encoding - kodowanie naprężeń), służy do badania obrazów fMRI uzyskanych dzięki specjalnie dostosowanym krótkim seriom impulsów fal radiowych. Informacje zebrane przez detektory aparatu do rezonansu magnetycznego trafiają do komputera, który analizuje kolejne ujęcia pracującego mięśnia i ustala na ich podstawie takie parametry, jak objętość mięśnia czy poziom występujących w nim naprężeń.

Informacje o właściwościach mechanicznych mięśni są następnie porównywane z danymi prawidłowymi. Można w ten sposób precyzyjnie ustalić, które fragmenty mięśnia wykazują wadliwe działanie, które może świadczyć np. o przebytym niedotlenieniu lub zwłóknieniu. Dane takie mają kluczowe znaczenie dla ustalenia stanu zdrowia pacjenta, szczególnie w przypadku zawału serca (właśnie do diagnozowania tej choroby zoptymalizowano SENC).

Opracowana technologia działa aktualnie wyłącznie w połączeniu z aparatami do fMRI firmy Philips, gdyż tylko one posiadają oprogramowanie umożliwiające wysyłanie impulsów potrzebnych do zastosowania SENC. Odpowiednie modyfikacje sprzętu innych producentów powinny jednak pozwolić na dostosowanie go do potrzeb nowej metody.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Rezonans magnetyczny i tomografia komputerowa to często zalecane metody badań obrazowych, które mimo pewnych podobieństw odpowiadają na inne medyczne pytania. Jeśli chcemy się dowiedzieć, na czym dokładnie polegają i jakie występują między nimi różnice, zapraszamy do artykułu!
      Nowoczesne technologie obrazowania
      Zarówno rezonans magnetyczny (RM), jaki i tomografia komputerowa (TK), wykorzystują nowoczesne technologie obrazowania, które z niebywałą dokładnością pozwalają odwzorować struktury znajdujące się wewnątrz ludzkiego ciała. Badaniu mogą być poddane poszczególne części ciała, konkretne narządy lub w razie potrzeby całe ciało - np. w celu wykrycia ewentualnych przerzutów nowotworowych. Pełną listę badań z zakresu RM i TK można znaleźć pod adresem Badania.znanylekarz.pl - po wybraniu konkretnego badania można wyszukać oferujące je placówki diagnostyczne, porównać ceny i od razu umówić się na wykonanie badania w dogodnym terminie.
      W obu przypadkach przebieg badania wygląda bardzo podobnie. Pacjent układa się na specjalnym stole, który wsuwany jest automatycznie do urządzenia z okrągłym otworem, przypominającym tunel. Technik, który nadzoruje badanie przebywa w osobnym pomieszczeniu i zdalnie wydaje pacjentowi polecenia dotyczące np. wstrzymania oddechu w odpowiednim momencie. Na tym kończą się jednak podobieństwa.
      Istotną różnicę stanowi technologia stosowana podczas badania. We wnętrzu tomografu zainstalowane są lampy rentgenowskie odpowiedzialne za wykonywane serii prześwietleń pod różnymi kątami. W rezonansie zaś to zadanie spoczywa na falach radiowych i wytworzonemu w tych specyficznych warunkach polu magnetycznemu. Towarzyszą temu głośne dźwięki, czego absolutnie nie zaobserwujemy podczas tomografii.
      Kiedy tomografia? Kiedy rezonans?
      To, na jakie badanie zostaniemy wysłani, zależy od decyzji lekarza, między innymi z tego powodu, że tomografia - ze względu na szkodliwe promieniowanie rentgenowskie - wymaga skierowania. W małej ilości nie jest ono szkodliwe, ale jeśli to badanie jest wykonywane zbyt często, może prowadzić do nieodwracalnych zmian w organizmie, uszkadzając DNA w komórkach, co w konsekwencji przyczynia się nawet do rozwoju nowotworów. Lekarz więc musi ocenić, czy przyczyna medyczna wymaga wykonania tomografii, czy raczej nie jest to konieczne.
      Zupełnie inaczej wygląda to w przypadku rezonansu magnetycznego, gdyż wykorzystywane w czasie tego badania fale radiowe nie są niebezpieczne dla tkanek. Oczywiście z pewnymi wyjątkami, które dotyczą osób, którym wszczepiono na przykład rozrusznik serca czy pompę insulinową. Rezonans może zaburzyć ich działanie.
      Czym jeszcze różnią się oba badania?
      Ważną różnicą jest także czas badania. Rezonans potrafi trwać nawet dwa razy dłużej od tomografii, co sprawia, że w przypadku nagłego zdarzenia (jak wypadek) przeprowadza się tomografię, by szybko przekonać się, z jakimi zmianami w organizmie mamy do czynienia. Tomografia to jednocześnie tańsza i powszechniejsza metoda badania.
      Co istotne, mimo że obie metody są bardzo dokładne, to jednak rezonans zapewnia większe możliwości, pozwalając zobaczyć także tkanki, których nie da się sprawdzić podczas tomografii. Często więc rezonans jest ważnym uzupełnieniem tomografii, zapewniając uzyskanie dokładniejszej diagnozy.
      Podsumowując, zarówno rezonans magnetyczny, jak i tomografia komputerowa są niezbędnymi badaniami, by precyzyjnie sprawdzić stan organizmu. Konieczność ich wykonania warto jednak skonsultować z lekarzem, który oceni, czy nie ma żadnego ryzyka dla zdrowia w związku z technologią stosowaną w każdym z nich. 

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wielokrotnie mogliśmy się przekonać, że jeśli nie używamy jakichś mięśni, to one zanikają. Jeszcze do niedawna naukowcy sądzili, że wraz z zanikaniem mięśni zanikają też jądra komórek, które je tworzyły. Jednak z najnowszego artykułu opublikowanego we Frontiers in Physiology dowiadujemy się, że jądra komórkowe, które zyskaliśmy podczas treningu, zostają zachowane, nawet jeśli włókna mięśniowe zanikają.
      Te pozostałe jądra działają jak „pamięć” mięśni, dzięki której, gdy wrócimy do treningu, szybciej jesteśmy w stanie mięśnie odzyskać. Naukowcy sądzą, że mechanizm ten ma zapobiegać zbytniej utracie masy mięśniowej w późniejszym wieku, gdy nie jesteśmy już tak aktywni, co w wieku nastoletnim. Wskazuje to również, że łatwo jest przeoczyć sportowca, który oszukuje i wspomaga rozwój mięśni środkami dopingującymi.
      Największe komórki w ciele człowieka, to właśnie komórki mięśniowe. W mięśniach poprzecznie prążkowanych tworzą one syncytia, czyli więlojądrowe komórki powstające poprzez połączeni luźnych komórek jednojądrowych. Syncytia zachowują się jak jedna wielka komórka. Syncytia występują w sercu, kościach czy łożysku. Jednak największe komórki i największe syncytia znajdziemy w naszych mięśniach, mówi profesor Lawrence Schwartz z University of Massachusetts.
      Wzrostowi mięśni towarzyszy dodawanie nowych jąder komórkowych z komórek macierzystych. Pozwala to na zaspokojenie zapotrzebowania rosnących komórek. To doprowadziło do pojawienia się hipotezy, każde jądro kontroluje ściśle zdefiniowaną objętość cytoplazmy, więc gdy masa mięśniowa się zmniejsza, czy to wskutek choroby czy ich nieużywania, zmniejsza się też liczba jąder komórek mięśni, dodaje uczony. Przypuszczenia takie miały o tyle mocne podstawy, że naukowcy badający tkankę mięśniową ulegającą atrofii donosili i obecnych w nich rozpadających się jądrach komórkowych. Dopiero jednak najnowsze techniki badawcze pozwoliły stwierdzić, że te rozpadające się jądra komórkowe nie pochodzą z komórek mięśni, ale z innych komórek, które pojawiły się w przeżywającej problemy tkance mięśniowej.
      Dwa niezależne badania, jedno przeprowadzone na gryzoniach, a drugie na owadach, wykazały, że podczas atrofii włókien mięśniowych nie dochodzi do utraty jąder komórkowych, stwierdza Schwartz w swoim artykule. Niewykluczone, że jądro komórkowe, które pojawiło się w mięśniach, pozostaje w nich na zawsze. Profesor Schwartz nie jest zaskoczony takimi wynikami. Mięśnie ulegają uszkodzeniu podczas intensywnych ćwiczeń, często zachodzą w nich zmiany związane z dostępnością pożywienia i innymi czynnikami środowiskowymi prowadzącymi do atrofii. Nie przetrwałyby długo, gdyby przy każdym takim zdarzeniu traciły jądra komórkowe, stwierdza.
      Skoro więc jądra komórkowe pozostają, to wiemy już, dlaczego łatwo jest odzyskać raz utraconą tkankę mięśniową. Dobrze udokumentowany jest fakt, że jest znacznie łatwiej odzyskać pewien poziom utraconej masy mięśniowej niż ją zbudować od podstaw, nawet jeśli przez długi czas nie ćwiczyliśmy. Innymi słowy, zamiast stwierdzać, że nieużywane mięśnie zanikają, powinniśmy powiedzieć, że nieużywane mięśnie zanikają, dopóki nie zaczniemy ich znowu używać.
      Odkrycie to pokazuje, jak ważne jest zbudowanie masy mięśniowej w młodości. Wówczas jesteśmy bardziej aktywni fizycznie, a wzrost masy mięśniowej jest wspomagany poprzez hormony, większy apetyt i duże zapasy komórek macierzystych. To idealny moment, by zbudować sobie zapas jąder komórkowych w mięśniach. Mogą się one przydać po wielu latach, gdy będziemy potrzebowali szybko nadrobić utraconą masę mięśniową, co pomoże nam w zachowaniu dobrego stanu zdrowia i niezależności w sędziwym wieku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Miomezyna to małe białko, które jest jednym z czynników stabilizujących miofibryle - włókienka kurczliwe mięśni. Wykorzystując kilka różnych technik, naukowcy z European Molecular Biology Laboratory (EMBL) w Hamburgu wykazali, że w pracujących mięśniach elastyczna część tego białka rozciąga się aż 2,5-krotnie.
      Ogony dwóch cząsteczek miomezyny tworzą elastyczne mostki między pęczkami włókien mięśniowych. Na każdym z ogonów znajdują się domeny immunoglobulinopodobne rozmieszczone na helisie alfa - trójwymiarowej strukturze w kształcie taśmy skręconej wzdłuż poprzecznej osi (całość przypomina koraliki nanizane na nitkę). Gdy białko jest rozciągane, wstęga się rozplata.
      Podczas badań zachowania miomezyny Niemcy posłużyli się krystalografią rentgenowską, niskokątowym rozpraszaniem promieniowania X (SAXS – Small Angle X-ray Scattering), a także mikroskopami elektronowym i sił atomowych.
      W przyszłości zespół Matthiasa Wilmannsa chce odtworzyć budowę całego filamentu miomezynowego oraz zbadać jego działanie w żywym organizmie.
       
       
    • przez KopalniaWiedzy.pl
      W artykule, który ukazał się w styczniowym numerze pisma Cell Metabolism, naukowcy opisali związek kluczowy dla wzrostu ćwiczonych i używanych mięśni. Surowiczy czynnik reakcji (ang. serum response factor, Srf), bo o nim mowa, przekłada sygnał mechaniczny na chemiczny.
      Sygnał z włókien mięśniowych kontroluje zachowanie komórek progenitorowych i ich udział we wzroście mięśnia - wyjaśnia Athanassia Sotiropoulos z Inserm. Komórki progenitorowe przypominają komórki macierzyste, ale ze względu na częściową specjalizację mogą się przekształcić nie w jakikolwiek, lecz w jeden lub co najwyżej kilka typów komórek.
      Wcześniejsze badania Francuzów na myszach i ludziach wykazały, że stężenie Srf spada z wiekiem, dlatego akademicy przypuszczali, że jest to przyczyną atrofii mięśni podczas starzenia. Mechanizm działania czynnika okazał się jednak inny niż zakładano. Naukowcy wiedzieli, że Srf kontroluje aktywność wielu genów włókien mięśniowych, ale nie mieli pojęcia, że potrafi wpływać na działanie mięśniowych komórek satelitarnych (komórek progenitorowych, które biorą udział w regeneracji uszkodzonego mięśnia).
      Podczas eksperymentów Sotiropoulos zademonstrowała, że myszy, u których w mięśniach nie występował Srf, pod wpływem obciążenia nie rozbudowywały muskulatury. Do komórek satelitarnych nie docierał sygnał, aby się dzieliły i łączyły z istniejącymi włóknami. Francuzi sądzą, że trudno byłoby wyznaczyć optymalną dawkę surowiczego czynnika reakcji, dlatego lepiej regulować kontrolowane przez niego prostaglandyny czy interleukiny.
      Srf działa m.in. na gen COX2 (cyklooksygenazy-2). Ponieważ inhibitorem cyklooksygenazy-2 jest choćby popularny środek przeciwbólowy i przeciwzapalny ibuprofen, warto się zastanowić, czy nie hamuje on przypadkiem regeneracji mięśni.
    • przez KopalniaWiedzy.pl
      Wśród osób nieprzejawiających w danym momencie objawów demencji te z obszarami korowymi o mniejszej objętości są bardziej zagrożone wczesną chorobą Alzheimera. Podczas badań porównywano rejony, o których wiadomo, że ulegają degeneracji w jej przebiegu.
      W ramach studium naukowcy analizowali skany z rezonansu magnetycznego (MRI) mózgu 159 osób bez demencji. Średnia wieku wynosiła 76 lat. Określano grubość wybranych rejonów kory. Na tej podstawie 19 ludzi trafiło do grupy wysokiego ryzyka alzheimeryzmu, 116 do grupy przeciętnego ryzyka, a 24 do grupy niskiego ryzyka. Na początku studium i przez 3 kolejne lata ochotników poddawano testom pamięciowym, a także dotyczącym rozwiązywania problemów i uwagi. Okazało się, że 21% przedstawicieli grupy wysokiego ryzyka doświadczyło pogorszenia funkcji poznawczych w ciągu 3 lat od wykonania rezonansu. W grupie średniego ryzyka dotyczyło to 7%, a w grupie niskiego ryzyka nikt nie miał tego typu problemów.
      Potrzebne są dalsze badania nad tym, jak wykorzystywanie skanów MRI do pomiaru rozmiarów różnych regionów mózgu w połączeniu z innymi testami może pomóc w jak najwcześniejszym zidentyfikowaniu osób z grupy najwyższego ryzyka wczesnej choroby Alzheimera - podkreśla dr Bradford Dickerson z Massachusetts General Hospital w Bostonie.
      Dickerson i jego współpracownik dr David Wolk z Uniwersytetu Pensylwanii wykorzystali dane zebrane w ramach Alzheimer's Disease Neuroimaging Initiative. Poza zmianami w zakresie grubości kory w określonych rejonach, panowie zauważyli, że w płynie mózgowo-rdzeniowym 60% osób w największym stopniu zagrożonych alzheimerem występowały podwyższone stężenia białek powiązanych z chorobą, w porównaniu do 36% przedstawicieli grupy przeciętnego ryzyka i 19% ludzi z grupy niskiego ryzyka.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...