Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Bombardowanie ujawniło wodę

Recommended Posts

Dzięki przeprowadzonemu niedawno bombardowaniu Księżyca NASA dowiedziała się, że na Srebrnym Globie występują duże ilości wody. Odkrycie to oznacza, że założenie stałej bazy księżycowej będzie łatwiejsze, niż dotychczas przypuszczano. Udowodniono przy tym, że niedawne doniesienia były prawdziwe.

Od dłuższego już czasu wiedziano, że na biegunach Księżca uwięzione są duże ilości wodoru. Misja LCROSS pokazała, że woda występuje w różnych miejscach i jest jej więcej.

Od czasu uderzenia LCROSS w krater Cabeus, naukowcy bez przerwy analizują uzyskane informacje.

Jesteśmy niezwykle podekscytowani - mówi Anthony Colaprete, główny badacz z Ames Research Center. Wiele dowodów pokazuje, że woda jest obecna zarówno w pyle powstałym wskutek uderzenia, jak i wypełniła otwór powstały wskutek uderzenia LCROSS - dodaje.

Naukowców czeka jeszcze wiele pracy. Misja dostarczyła bowiem olbrzymiej ilości danych. Obok śladów wody z Cabeusa znaleźliśmy też ślady wielu interesujących substancji. Stale zacienione obszary Księżyca to prawdziwe lodowate pułapki, które od miliardów lat gromadzą materiał - stwierdził Colaprete.

Share this post


Link to post
Share on other sites

Stale zacienione obszary Księżyca do prawdziwe lodowate pułapki (...)

 

Błąd ;-)

 

Od dłuższego już czasu wiedziano, że na biegunach Księżca uwięzione są duże ilości wodoru.

 

To woda czy wodór? Bo o tlenie nic nie wspomniano...

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      W najbliższy piątek, 4 marca, fragment rakiety nośnej spadnie po niewidocznej z Ziemi stronie Księżyca. Naukowcy postanowili skorzystać z okazji i przeprowadzić dodatkowe badania Srebrnego Globu. Satelita Lunar Reconnaissance Orbiter (LRO) zbada po uderzeniu zmiany w atmosferze Księżyca oraz powstały krater. Ocenia się, że fragment rakiety uderzy w krater Hertzsprung w piątek o godzinie 13:25 czasu polskiego.
      To, o ile wiadomo, pierwszy raz, gdy dojdzie do takiego wydarzenia. Dotychczas ludzie rozbijali pojazdy o powierzchnię Srebrnego Globu albo przypadkiem, podczas nieudanych prób lądowania, albo też celowo. Początkowo sądzono, że obserwowany fragment zdążający w stronę Księżyca, to pozostałości rakiety Falcon 9 firmy SpaceX. Jednak po szczegółowej analizie spektrum światła odbijanego przez obiekt, eksperci doszli do wniosku, że lepiej pasuje ono do rodzaju farby używanej przez Chińczyków.
      Uznano, że to kawałek chińskiej rakiety Długi Marsz 3C, która została wystrzelona w 2014 roku w ramach misji Chang'e 5-T1. W ramach tej misji pojazd Chang'e 5-T1 przeleciał za Księżycem i powrócił na Ziemię. Celem zaś było przetestowanie możliwości wejścia w atmosferę na potrzeby bezzałogowej misji Chang'e 5, która w 2020 roku przywiozła próbki księżycowego gruntu.
      Uderzenie, które nastąpi 4 marca, będzie podobne do upadku trzeciego stopnia rakiety Saturn V, który w ramach programu Apollo został celowo rozbity o powierzchnię Księżyca. Jak wyjaśniają eksperci, pozostałości rakiety Długi Marsz nie utworzą zbyt głębokiego krateru na powierzchni. Podobnie zresztą było w przypadku Saturn V. Oba fragmenty można bowiem porównać do puszek do piwa i podczas zderzenia znaczna część energii zostanie zużyta na zgniecenie rakiet, a nie na wyżłobienie krateru.
      Uderzenie fragmentu chińskiej rakiety to bardzo dobra okazja do badań i lepszego zrozumienia procesu powstawania kraterów uderzeniowych na Księżycu. Lekcja tym cenniejsza, że LRO wykonał już bardzo szczegółowe zdjęcia miejsca spodziewanego uderzenia, więc uczeni będą dysponowali materiałem porównawczym. Jedynym nieznanym parametrem jest obecnie orientacja fragmentu w stosunku do jego trajektorii. Wiadomo, że się on obraca, nie wiadomo jednak dokładnie, w jaki sposób. Specjaliści mają nadzieję, że Chińczycy to wiedzą i podzielą się swoimi danymi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od kilku lat Księżyc cieszy się dużym zainteresowaniem agencji kosmicznych i firm prywatnych. Planowane są misje załogowe i bezzałogowe na Srebrny Glob. Jednym z najbardziej ambitnych projektów jest zbudowanie na orbicie Księżyca stacji Lunar Gateway, w której przechowywane będą zapasy, urządzenia i roboty, będzie służyła jako baza dla astronautów i zapewniała łączność z Ziemią.
      Do roku 2030 różne firmy i organizacje planują ponad 90 misji związanych z Księżycem. I nawet jeśli jakaś część z nich nie dojdzie do skutku, to inne – być może większość – się odbędą. A to dopiero początek. Zainteresowanie Księżycem będzie rosło. Być może w przyszłości powstanie na nim stała baza.
      Wszystkie te misje oraz potencjalna baza będą potrzebowały łączności z Ziemią. A jej zapewnienie to niełatwe zadanie. Już w czasie misji Apollo były problemy z komunikacją pomiędzy Srebrnym Globem a planetą. A gdy misji będzie więcej i będą się one odbywały w różnych miejscach Księżyca, problemy będą jeszcze większe. Niemożliwe jest bowiem zapewnienie bezpośredniej łączności zarówno ze stroną Księżyca niewidoczną z Ziemi, jak i z dużych obszarów podbiegunowych. Nawet na widocznej z Ziemi stronie łączność mogą zakłócać nierówności terenu. Trzeba też pamiętać, że oba ciała niebieskie dzieli kilkaset tysięcy kilometrów, zatem do zapewnienia łączności trzeba silnych nadajników i dużych anten oraz wzmacniaczy. Pracujące na Księżycu niewielkie roboty z pewnością nie będą miały ani odpowiednich urządzeń, ani wystarczająco dużo energii, by komunikować się z Ziemią.
      Dlatego też włoska firma Argotec oraz należące do NASA Jest Propulsion Laboratory (JPL) pracują nad Andromedą. Ma to być konstelacja 24 satelitów krążący po 6 orbitach wokół Srebrnego Globu. Satelity służyłyby do przekazywania sygnałów radiowych pomiędzy Ziemią a Księżycem, zapewniając nieprzerwaną łączność na biegunach i niemal nieprzerwaną wszędzie indziej. Włoska firma opracowuje koncepcję satelity, a JPL ma dostarczyć podsystemy, takie jak nadajniki czy anteny.
      Zadanie tylko z pozoru jest proste. Satelity powinny bowiem znaleźć się na stabilnych orbitach, czyli takich, które nie będą wymagało od nich manewrowania. Po drugie, orbity należy dobrać tak, by zapewnić jak najlepszą łączność obszarom, na którym prawdopodobnie będzie prowadzona najbardziej intensywna działalność. Po trzecie zaś, zapewniając łączność tym obszarom, nie należy zapomnieć o pozostałej części powierzchni Księżyca.
      Zaproponowana obecnie przez Argotec koncepcja zakłada, że satelity będą znajdowały się na stabilnych orbitach, na których będą mogły pracować przez co najmniej 5 lat. Każdy z nich będzie krążył po eliptycznej orbicie o czasie obiegu 12 godzin. Orbity będą przebiegały w odległości 720 km od powierzchni Księżyca w punkcie najbliższym (perycentrum) i 8090 km w punkcie najdalszym (apocentrum). Jako, że satelita podróżuje najwolniej gdy jest w apocentrum, orbity zostaną ustawione tak, by ich apocentrum przebiegało nad najbardziej interesującym punktami Księżyca, co zapewni najdłuższy okres nieprzerwanej łączności.
      Dzięki dobrze dobranym orbitom nad każdym z biegunów Księżyca zawsze będzie znajdował się jakiś satelita, a przez 94% czasu będą to trzy satelity. Z kolei nad równikiem co najmniej jeden satelita będzie przez 89% czasu, a trzy satelity przez 79%. Jako, że nawet w apocetrum satelita będzie znajdował się w odległości mniejszej niż 10 000 km od powierzchni, zapewni łączność również niewielkim urządzeniom, nie posiadającym dużych anten i nadajników. Co więcej, dzięki satelitom możliwa będzie komunikacja w czasie rzeczywistym pomiędzy ludźmi pracującymi w dwóch oddalonych lokalizacjach. Jakby jeszcze tego było mało, satelity będą działały jak księżycowy GPS, zapewniając dane lokalizacyjne ludziom i urządzeniom na Srebrnym Globie.
      Andromeda musi być bardzo wydajna. Efektywna komunikacja głosowa czy przesyłanie materiałów wideo w wysokiej rozdzielczości będą wymagały prędkości transmisji rzędu megabitów na sekundę. Tym bardziej biorąc pod uwagę liczbę planowanych misji.
      Jednak to nie wszystko. NASA chce umieścić na niewidocznej z Ziemi stronie Księżyca radioteleskop. Agencja pracuje obecnie nad dwiema koncepcjami. Pierwsza z nich – LCRT – zakłada zbudowanie w księżycowym kraterze największego w Układzie Słonecznym radioteleskopu o średnicy 1 km. Zbudowany przez roboty teleskop mógłby prowadzić obserwacje niedostępne z Ziemi, gdyż byłby wolny zarówno od zakłóceń powodowanych przez człowieka, zakłóceń jonosfery czy satelitów. Druga zaś rozważana koncepcja – FARSIDE – zakłada wybudowanie 128 anten. Byłyby one ustawione w okręgu o średnicy 10 km i połączone kablami ze stacją centralną.
      Informacje z takich teleskopów również byłyby przekazywane przed Andromedę. A na Ziemi wszystkie te dane trzeba by było odebrać. Przykładem systemu odbiorczego może być należący do NASA DSN (Deep Space Network). To zespół anten znajdujących się w USA, Australii i Hiszpanii, które służą komunikacji z misjami w dalszych partiach przestrzeni kosmicznej. DNS już teraz obsługuje wiele misji, a kolejne są planowane. Dlatego też Andromeda raczej nie będzie mogła skorzystać z DSN. Potrzebny będzie osobny system odbiorczy na Ziemi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W górnych 2 kilometrach skorupy ziemskiej znajduje się około 24 milionów kilometrów sześciennych wody. To w większości woda pitna. Jednak poniżej tego rezerwuaru, zamknięte w skałach, znajdują się kolejne rozległe zasoby wodne, złożone głównie z solanki liczącej sobie setki milionów, a może nawet ponad miliard lat. Najnowsze szacunki pokazują, że zasoby te, wraz z położoną powyżej wodą, stanowią największy rezerwuar wody na Ziemi.
      Dotychczas uważano, że największymi, poza oceanami, rezerwuarami wody na Ziemi są lodowce i lądolody, których objętość wynosi około 30 milionów km3. Okazuje się jednak, że prawdopodobnie musimy zweryfikować swoje przekonania.
      Dość dobrze wiemy, ile wody znajduje się w górnej 2-kilometrowej warstwie skorupy ziemskiej. Jednak zasoby położone poniżej, na głębokości nawet do 10 kilometrów, są znacznie słabiej poznane. Ich oszacowania podjęli się naukowcy z międzynarodowego zespołu, w skład którego wchodzili uczeni z USA, Kanady, Wielkiej Brytanii i Hongkongu.
      Uczeni zbadali strefę „głębokich wód podziemnych”, położonych na głębokości 2–10 kilometrów. W swojej pracy uwzględnili rozkład skał osadowych oraz skrystalizowanych oraz szacunki dotyczące związku porowatości skał z głębokością, na jakiej się znajdują. Szacunki wykazały, że na głębokości poniżej 2 kilometrów znajduje się około 20 milionów km3 wody. Jeśli szacunki te są prawidłowe, to w skorupie ziemskiej, na głębokości do 10 kilometrów zamkniętych jest 44 miliony km3 wody. To zaś oznacza, że wody tej jest więcej, niż wody zamkniętej w lądolodach. Odkrycie takie pozwoli lepiej zrozumieć budowę planety i procesy geochemiczne zachodzące na Ziemi.
      Szacunki te zwiększają nasze rozumienie ilości wody na Ziemi i dodają nowy wymiar do rozumienia cyklu hydrologicznego, mówi Grant Ferguson, hydrolog z University of Saskatchewan.
      Te głęboko położone zasoby wody nie mogą być co prawda wykorzystane w celach spożywczych czy do nawadniania, ale dokładne szacunki ilości wody oraz tego, czy i w jaki sposób jest ona włączona w obieg wody na powierzchni, są potrzebne do planowania takich działań jak produkcja wodoru, składowanie odpadów atomowych czy pobieranie z powietrza i bezpieczne składowanie dwutlenku węgla. Jeśli bowiem chcemy np. bezpiecznie składować pod ziemią odpady atomowe, musimy znaleźć takie miejsce, do którego nie ma dostępu woda, trafiająca później na powierzchnię lub do płytko położonych zbiorników podziemnych. Unikniemy w ten sposób zanieczyszczenia wód, z których korzystamy.
      Głęboko położone zbiorniki wody, te znajdujące się na głębokości poniżej 2 kilometrów, mogą być izolowane od setek milionów czy miliarda lat. Mogą nie mieć żadnego połączenia ze światem zewnętrznym. Są więc kapsułami czasu, dzięki którym możemy lepiej poznać warunki panujące na Ziemi w przeszłości. Mogą też zawierać wciąż aktywne mikroorganizmy sprzed setek milionów lat.
      Naukowcy mogą szacować głęboko położone zasoby wodne obliczając, jak wiele wody może być zamkniętych w skałach. To zaś zależy od porowatości skał. Wcześniejsze szacunki skał znajdujących się na głębokości 2–10 kilometrów skupiały się na skałach krystalicznych, jak granit, które charakteryzują się niską porowatością. Jednak autorzy najnowszych badań dodali do tych szacunków skały osadowe, znacznie bardziej porowate. I stwierdzili, że mogą one przechowywać dodatkowo 8 milionów kilometrów sześciennych wody.
      Jako, że woda ta jest położona głęboko i często wśród skał o niskiej przepuszczalności, w dużej mierze nie jest włączona w cykl hydrologiczny planety. Tym bardziej, że to głównie solanka, która może być o 25% bardziej gęsta od wody morskiej. A to jeszcze bardziej utrudnia jej przedostanie się do wyżej położonych warstw skorupy ziemskiej. Nie jest to jednak całkowicie wykluczone. Różnica ciśnień w obszarach położonych na różnych wysokościach może powodować, że obieg wody sięga naprawdę głęboko. W kilku miejscach Ameryki Północnej udokumentowano obieg wody, w ramach którego woda z powierzchni trafia nawet głębiej niż 2 kilometry w głąb skorupy ziemskiej.
      Najnowsze szacunki bardzo zainteresowały specjalistów badających biosferę. Dotychczas odkryliśmy mikroorganizmy na głębokości 3,6 kilometra. Jeśli gdzieś jest woda w stanie ciekłym, jest też spora szansa na obecność mikroorganizmów. Mogą one żyć dzięki reakcjom chemicznym. Jeśli wokół nich znajdują się odpowiednie pierwiastki, mogą je wykorzystać do wytwarzania energii, mówi mikrobiolog Jennifer Biddle z University of Delaware. Badanie tych głęboko położonych wód może też powiedzieć nam sporo o potencjalnym życiu w innych miejscach Układu Słonecznego. Jeśli i na Marsie znajdują się głęboko położone zbiorniki wodne, może tam być życie. Zatem tego typu habitaty na Ziemi mogą być bardzo dobrymi analogiami innych ciał niebieskich, jak Mars czy Enceladus, księżyc Saturna, który na pewno zawiera wodę w swoim wnętrzu, dodaje Biddle.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda to niezwykły płyn. Niezbędny i najbardziej powszechny, a jednocześnie najmniej ją rozumiemy. Ma wiele niezwykłych właściwości, których wciąż nie potrafimy wyjaśnić. Na przykład większość płynów staje się coraz gęstszych w czasie schładzania. Tymczasem woda jest najgęstsza w temperaturze około 4 stopni Celsjusza. Ta jej właściwość powoduje, że lód unosi się na powierzchni, dzięki czemu może istnieć życie. Gdyby bowiem tonął, organizmy w oceanach nie przetrwałyby zimy.
      Woda ma też niezwykle duże napięcie powierzchniowe, dzięki czemu owady mogą po niej chodzi oraz olbrzymią zdolność przechowywania ciepła, co stabilizuje temperaturę oceanu.
      Teraz naukowcy ze SLAC National Accelerator Laboratory, Uniwersytet Stanforda i Uniwersytetu w Sztokholmie przeprowadzili pierwsze bezpośredni obserwacje, które pokazały, jak wzbudzone laserem atomy wodoru w molekułach wody ciągną i pchają sąsiednie molekuły wody. Badania, których wyniki opublikowano na łamach Nature, opisują zjawiska, które mogą leżeć u podstaw niezwykłych właściwości wody. Ich zbadania może pomóc nam w zrozumieniu, w jaki sposób woda pomaga białkom spełniać ich rolę w organizmach żywych.
      Jeden z członków zespołu badawczego, profesor Anders Nilsson z Uniwersytetu w Sztokholmie przypomina, że już od pewnego czasu przypuszczano, iż za wiele właściwości wody mogą odpowiadać te tzw. jądrowe efekty kwantowe. Nasz eksperyment to pierwsze obserwacje tych efektów. Pytanie brzmi, czy rzeczywiście są one zaginionym ogniwem teoretycznych modeli opisujących niezwykłe właściwości wody, mówi uczony.
      W każdej molekule wody znajdziemy jeden atom tlenu i dwa atomy wodoru. Istnieje też cała sieć wiązań wodorowych pomiędzy dodatnio naładowanymi atomami wodoru w jednej molekule i ujemnie naładowanymi atomami tlenu w sąsiednich molekułach. Ta siec utrzymuje całość razem. Dopiero jednak teraz udało się zaobserwować, jak molekuły wody – za pośrednictwem tej sieci – wchodzą w interakcje.
      To pierwsze badania, w których bezpośrednio wykazano, że reakcja sieci wiązań wodorowych na impuls energii w postaci światła lasera zależy od rozkładu atomów wodoru w przestrzeni, który jest z kolei determinowany zasadami mechaniki kwantowej. Od dawna uważano, że to właśnie ona nadaje niezwykłe właściwości wodzie i jej sieci wiązań wodorowych, stwierdza Kelly Gaffney ze SLAC.
      Obserwacje tego typu zjawisk są niezwykle trudne, gdyż ruchy wiązań atomowych są bardzo szybkie i odbywają się w bardzo małej skali. Amerykańsko-szwedzki zespół naukowy poradził sobie z tym problemem dzięki MeV-UED, superszybkiej „kamerze elektronowej“ ze SLAC, która wykrywa niewielki ruchy molekuł rozpraszając na nich strumień elektronów.
      Naukowcy najpierw wygenerowali strumienie wody o średnicy zaledwie 100 nanometrów. To około 1000-krotnie mniej niż średnica włosa. Następnie za pomocą podczerwonego lasera wprawili w drgania molekuły wody tworzące te strumienie. Wtedy do dzieła przystąpił MeV-UED, ostrzeliwując wodę krótkimi wysokoenergetycznymi impulsami elektronów. W ten sposób uzyskano obraz o wysokiej rozdzielczości, który wyglądał jak poklatkowy film, szczegółowo pokazujący, jak molekuły reagują na światło.
      Obraz skupiał się na grupach, na które składały się po trzy molekuły. Dzięki temu naukowcy mogli zaobserwować, jak najpierw atomy wodoru przyciągają do siebie atomy tlenu z sąsiednich molekuł, by za chwilę – dzięki energii uzyskanej z lasera – mocno je odepchnąć, zwiększając odległości pomiędzy molekułami.
      To naprawdę otwiera nowe możliwości w dziedzinie badań nad wodą. W końcu możemy zobaczyć poruszające się wiązania wodorowe. Chcielibyśmy teraz powiązać te ruchy z szerszym obrazem, który może rzucić światło na to, w jaki sposób woda przyczyniła się do powstania i przetrwania życia na ziemi. Możemy też dzięki temu udoskonalić metody pozyskiwania energii odnawialnej, stwierdził Xijie Wang ze SLAC.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda znajdująca się na zimnej powierzchni zanim zamarznie musi się ogrzać. Odkrycie dokonane przez naukowców z Cambridge University i Uniwersytetu Technologicznego w Grazu pozwoli lepiej zrozumieć i kontrolować proces zamarzania.
      Anton Tamtögl i jego zespół przeprowadzili eksperymenty z molekułami wody umieszczonymi na zimnym grafenie i zauważyli, że początkowo odpychają się one od siebie. Dopiero pojawienie się dodatkowej energii pozwala im na zmianę orientacji i utworzenie wiązań elektrostatycznych.
      Gdy woda trafia na zimną powierzchnię, zachodzi proces nukleacji, w wyniku którego molekuły tworzą wiązania i błyskawicznie pojawiają się kryształy lodu. Zjawisko to było intensywnie badane w skali makroskopowej. Jednak trudno je badać na poziomie molekuł, gdyż zamarzanie zachodzi bardzo szybko, w czasie pikosekund.
      Naukowcy z Cambridge wykorzystali nowatorką technikę badawczą zwaną echem spinowym helu-3. Polega ona na rozpraszaniu strumienia spolaryzowanych atomów helu. Atomy docierają do badanych powierzchni w skoordynowanych pakietach, a czas pomiędzy kolejnymi pakietami mierzony jest w pikosekundach. Ruch molekuł na powierzchni powoduje różnice w fazach pakietów. A różnice te można wychwycić i na ich podstawie badać zjawiska zachodzące w czasie pikosekund.
      Badania ujawniły, że początkowo wszystkie molekuły wody przyczepiają się do zimnej powierzchni grafenu w ten sam sposób, z oboma atomami wodoru przy powierzchni i atomem tlenu powyżej. Molekuły wody są dipolami. Od strony tlenu mamy ładunek ujemny, od strony wodoru – dodatni. Tak więc pomiędzy identycznie zorientowanymi molekułami dochodzi do odpychania się, co uniemożliwia nukleację. Naukowcy zauważyli, że zjawisko to może zostać przezwyciężone poprzez ogrzanie molekuł. Dopiero wówczas zmieniają one orientację tak, że zaczynają się przyciągać, co rozpoczyna proces nukleacji.
      Naukowcy, chcąc lepiej zrozumieć to zjawisko, przeprowadzili symulacje komputerowe ukazujące zachowanie molekuł wody przy różnych energiach. Zgodnie z ich oczekiwaniami, symulacje wykazały, że zmieniając ilość ciepła dostarczonego do molekuł, można powstrzymywać lub rozpoczynać proces nukleacji.
      Odkrycie może doprowadzić do opracowania nowych technik ochrony przed formowaniem się lodu na skrzydłach samolotów, turbinach wiatrowych czy sprzęcie telekomunikacyjnym. Pozwoli też lepiej zrozumieć proces formowania się i topnienia lodu w lodowcach, a to z kolei da nam lepsze zrozumienie ziemskiej kriosfery i wpływu ocieplenia klimatu.
      Z wynikami badań można zapoznać się na łamach Nature Communications.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...