Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Belgijscy naukowcy odkryli, że rekiny z rodzaju Etmopterus włączają i wyłączają swoją bioluminescencję dzięki trzem hormonom. To pierwszy tego typu przypadek, u innych zwierząt za to samo odpowiadają bowiem neurony (Journal of Experimental Biology).

W grę wchodzą melatonina, prolaktyna i alfa-melanotropina, które kontrolują też zabarwienie skóry tych ryb. Dzięki najnowszemu odkryciu potwierdza się przypuszczenie wielu biologów, że bioluminescencja pojawiała się w toku ewolucji kilkakrotnie.

Emitujące światło komórki nie są połączone z pełniącymi istotniejszą rolę skupiskami neuronów. Na nieznany dotąd mechanizm działania wskazywał też wolny "rozruch". Kiedy fragmenty skóry rekinów wystawiono na oddziaływanie hormonów i neuroprzekaźników, udało się potwierdzić, że włącznikami są rzeczywiście te pierwsze. Melatonina powoli wywoływała utrzymujące się przez parę godzin świecenie. Prolaktyna działała znacznie szybciej, ale i świecenie zanikało prędzej, bo po godzinie. Naukowcy przypuszczają, że hormon ten bierze udział w komunikacji, np. podczas szukania partnera. Trzeci z hormonów – alfa-melanotropina - wyłączał luminescencję. W przypadku kilku "pospolitych" neuroprzekaźników nie wystąpił żaden efekt.

Julien Claes i Jérôme Mallefet z Katolickiego Uniwersytetu w Leuven uważają, że u kolczaków czarnych (Etmopterus spinax) narządy świetlne zapewniają kamuflaż. Podświetlają rybę od dołu, gdy schodzi na większe głębokości.

Choć melatonina nie jest tak szybka i precyzyjna jak występujące u ryb kostnoszkieletowych mechanizmy kontrolowane przez nerwy, u rekinów doskonale się sprawdza. Zanurzając się, natrafiają na ciemniejsze wody, a skoro melatonina jest tzw. hormonem ciemności, pasuje tu idealnie.

Claes jak ognia unika uogólnień, ale podejrzewa, że u innych "wyposażonych" w bioluminescencję rekinów fotofory także są uruchamiane przez hormony. Naukowiec już planuje dalszy ciąg badań.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Rekiny mieszkają na Ziemi od 450 milionów lat. Są zatem starsze niż Himalaje, starsze niż ssaki, nawet starsze niż drzewa. Naukowcy odkryli właśnie, że przed 19 milionami lat doszło do ich wielkiego wymierania. Nie wiadomo, jak wielkiego i nie wiadomo, co było jego przyczyną.
      Rekiny przetrwały wiele masowych wymierań. A ten epizod był prawdopodobnie najpoważniejszy, jakiego doświadczyły. Musiał stać się coś znaczącego, mówi Elizabeth Sibert, jedna z autorek najnowszych badań.
      Na pierwszy ślad wymierania rekinów naukowcy natrafili w 2017 roku. Analizowali wówczas próbki osadów z południa i północy Pacyfiku. Osady zawierają materiał sprzed kilkuset milionów lat, a każdy centymetr reprezentuje około 100 000 lat. Gdy przyjrzeli się skamieniałościom pozostałym po rekinach zauważyli, że 19 milionów lat temu musiała zajść gwałtowna zmiana. Osady starsze niż 19 milionów lat charakteryzują się dużą liczbą i bioróżnorodnością rekinich szczątków. Zaś w osadach młodszych widać 90-procentowy spadek liczby i 70-procent spadek zróżnicowania rekinów. Nigdy potem rekinów nie było tak dużo i nie były tak zróżnicowane.
      Co prawda badane próbki pochodzą tylko z Pacyfiku, jednak to, co wiemy o innych osadach, pośrednio potwierdza te spostrzeżenia. Sibert przypomina, że niektóre osady z Atlantyku sprzed 30 milionów lat wskazują na istnienie wówczas dużej liczby rekinów, natomiast w próbkach sprzed kilku milionów lat widać ich zdecydowany spadek. Nie badano jeszcze pod tym kątem atlantyckich próbek sprzed około 19 milionów lat.
      Wszystko wskazuje na to, że doszło do masowego wymierania rekinów. Problem jednak w tym, że nie wiadomo dlaczego. Izotopy węgla i tlenu, używane do rekonstrukcji temperatury i cyklu węglowego, nie wskazują na żadne zmiany w tym okresie. Wręcz przeciwnie. Są one na tak przeciętnym poziomie, że dotychczas naukowcy niemal w ogóle nie zajmowali się badaniem tego, co działo się 19 milionów lat temu.
      Seth Finnegan, profesor z University of California, mówi, że spostrzeżenia są intrygujące, jednak badania opierają się tylko na dwóch próbkach. Możliwe więc, że do masowego wymierania rekinów doszło tylko na północy i południu Pacyfiku. Uczony przyznaje jednak, że taki scenariusz jest mało prawdopodobny i wydarzenia takie miały zapewne związek z tym, co działo się w innych częściach oceanu.
      Naukowcy sądzą, że określenie tego, co stało się z rekinami, nie powinno być trudne, jednak potrzebujemy więcej badań i więcej danych. Tak czy inaczej, badania te pokazują, że rekiny doświadczyły dużych zmian populacyjnych. Jako że odgrywają one niezwykle ważną rolę w oceanach, zmiany takie mogły wpłynąć też na cały ekosystem.
      Obecnie rekiny również doświadczają gwałtownych spadków populacji. Tym razem przyczyną są ludzie, którzy każdego roku zabijają kilkadziesiąt milionów tych zwierząt.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od roku 1970 populacja rekinów zamieszkujących otwarte oceany zmniejszyła się o 71%. Ludzie każdego roku zabijają nawet 100 milionów tych zwierząt, przez co obecnie 75% pełnomorskich gatunków jest zagrożonych.
      To pierwszy tak pełny obraz spadku populacji rekinów, mówi ekolog morski Nuno Queiroz z Research Center in Biodiversity and Genetic Resources, który nie był zaangażowany w opisywane badania. To pokazuje, jak zgubny wpływ ma nadmiernie odławianie, dodaje.
      Problem olbrzymiego odławiania rekinów znany jest nie od dzisiaj. Dotychczas jednak prowadzono badania regionalne. Teraz mamy obraz globalny. Naukowcy przyjrzeli się 31 gatunkom rekinów i płaszczek żyjących na otwartych wodach i obliczyli, jak poszczególne populacje zmieniały się od 1970 roku.
      Niektóre spadki są zatrważające, mówi współautor badań, Nicholas Dulvy z Simon Fraser University. Jeszcze w 1980 roku zagrożone były 2 spośród badanych gatunków. Obecnie zagrożone są 24 gatunki. Byłem zaszokowany. Sytuacja uległa gwałtownemu pogorszeniu w ostatniej dekadzie, dodaje Dulvy.
      Rybacy bezwzględnie traktują zwierzęta. Żywym rekinom odcinane są płetwy, a krwawiące ciężko ranne zwierzęta wrzucane są do oceanu, gdzie giną w męczarniach, powoli duszą się, opadając na dno. Odcięte płetwy trafiają zaś na talerze miłośników zupy z płetw rekina. Do zagłady rekinów przyczyniają się też producenci i konsumenci suplementów z oleju z wątroby rekina, które mają wzmacniać odporność czy leczyć raka. Brak jednak badań klinicznych potwierdzających jego bezpieczeństwo i skuteczność.
      Dobre wieści są takie, że strategie ochrony rekinów mogą działać. Niestety, dysponujemy nielicznymi przykładami takich udanych działań. Jednym z nich jest stopniowe odtwarzanie się populacji żarłaczy białych u wybrzeży USA, gdzie ograniczono połowy tych zwierząt.
      Wprowadzenie takiej ochrony jest jednak bardzo trudne. Przemysł połowowy wywiera intensywną presję, sprzeciwiając się ograniczeniom, w imię swoich krótkoterminowych interesów, mówi współautorka badań Sonja Fordham.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Znaleziono dowody bezpośrednio łączące hormon melatoninę z cukrzycą typu 2. Jak donoszą naukowcy z Imperial College London (ICL), osoby, u których występują rzadkie mutacje w receptorze melatoniny, są w większym stopniu zagrożone cukrzycą typu 2.
      O tym, że zegar biologiczny i melatonina mogą mieć coś wspólnego z cukrzycą, świadczą też pośrednio wyniki wcześniejszych badań. Wykazano m.in., że ludzie, którzy pracują na nocne zmiany, znajdują się w grupie podwyższonego ryzyka cukrzycy typu 2. Poza tym gdy u ochotników przez 3 dni z rzędu zaburzano sen, zaczynali przejściowo wykazywać objawy cukrzycy.
      W ramach najnowszego studium akademicy z ICL odkryli, że u osób z 4 rzadkimi mutacjami w genie receptora melatoniny MT-2 ryzyko wystąpienia cukrzycy typu 2. rośnie aż 6-krotnie. Ponieważ wydzielanie insuliny jest regulowane przez melatoninę, autorzy raportu opublikowanego w Nature Genetics uważają, że mutacje zaburzają związek między zegarem biologiczny a wyrzutem insuliny. Skutkiem tego są problemy z kontrolą poziomu glukozy we krwi.
      Odkryliśmy bardzo rzadkie warianty genów MT-2, które wywierają o wiele silniejszy wpływ niż znalezione wcześniej powszechniejsze wersje - wyjaśnia prof. Philippe Froguel.
      Na początku naukowcy z ICL oraz ich współpracownicy z Wielkiej Brytanii i Francji przyglądali się genowi MT-2 u 7.632 osób. Poszukiwali niezwykłych wariantów, które zwiększałyby ryzyko cukrzycy typu 2. W sumie odkryli 40 wariantów, w tym 4 bardzo rzadkie, ale kompletnie pozbawiające receptory zdolności reagowania na melatoninę. Następnie związek między mutacjami a cukrzycą potwierdzono na próbie kolejnych 11.854 badanych.
      Wpływ mutacji na działanie receptora MT-2 określano podczas eksperymentów na hodowlach ludzkich komórek.
    • By KopalniaWiedzy.pl
      Zwierzęta przybierają na ogół jakieś barwy, by odstraszyć drapieżniki albo się przed nimi ukryć. Okazuje się, że niesymbiotyczne bakterie oceaniczne zachowują się dokładnie na odwrót - świecą, by zwrócić na siebie uwagę, bo zjedzenie stanowi gwarancję rozprzestrzenienia i opanowania nowych okolic.
      Margarita Zarubin, studentka z Uniwersytetu Hebrajskiego w Jerozolimie, która wcześniej uczyła się w Oldenburgu, badała bioluminescencyjne bakterie Photobacterium leiognathi. Hipoteza, że mikroby świecą, by zostać upolowane, pojawiła się ponad 30 lat temu, ale bazowała głównie na częstym występowaniu luminescencyjnych bakterii w przewodzie pokarmowym ryb. Nie przeprowadzono eksperymentów, które mogłyby to potwierdzić. Chcąc sprawdzić, "co w morskiej trawie piszczy", izraelski zespół umieścił na jednym końcu akwarium torebkę ze zwykłymi P. leiognathi, a na drugim z bakteriami zmodyfikowanymi genetycznie w taki sposób, by nie mogły świecić. W zbiorniku znajdowały się m.in. artemia (Artemia). Okazało się, że skorupiaki i inne organizmy gromadziły się wokół świecącego woreczka, a koło ciemnego nie.
      W kolejnym etapie badań biolodzy pozwolili wszystkim pływać swobodnie. Po paru godzinach odwłoki przedstawicieli zooplanktonu zaczęły świecić. Później świecące artemia zmieszano z osobnikami, które nie jadły P. leiognathi i umieszczono w kanale wodnym z polującymi na nie rybami Apogon annularis. By na filmie było dokładnie widać przebieg zdarzeń, wykorzystano podświetlenie podczerwienią. Okazało się, że nocne ryby polowały wyłącznie na skorupiaki ze świecącymi odwłokami. Po zbadaniu odchodów A. annularis szybko stało się jasne, że bakterie przeszły przez ich przewód pokarmowy bez najmniejszego uszczerbku.
      Wykorzystując skorupiaki i ryby, luminescencyjne bakterie nie tylko przemieszczały się po oceanie, ale i pożywiły się przy okazji tym, co znajdowało się w jelitach przewoźnika. To wysoce korzystne przede wszystkim dla bakterii z ubogich w pokarm głębin.
    • By KopalniaWiedzy.pl
      Grupa biologów morskich stwierdziła, że wśród rekinów żyjących w pobliżu wschodnich wybrzeży Australii rozpowszechnione jest krzyżowanie dwóch gatunków. To pierwszy udokumentowany przypadek rekiniej hybrydyzacji.
      Obszary występowania Carcharhinus tilstoni i żarłaczy czarnopłetwych (C. limbatus) pokrywają się wzdłuż północnych i wschodnich wybrzeży Australii. Za pomocą testów genetycznych, m.in. sekwencjonowania mitochondrialnego DNA, i pomiarów ciała (długości osobnika dojrzałego płciowo, długości po urodzeniu i liczby kręgów) zespół pracujący pod przewodnictwem naukowców z University of Queensland zidentyfikował 57 hybryd w 5 lokalizacjach. Chociaż blisko spokrewnione, wymienione gatunki osiągają inne maksymalne rozmiary i są różne genetycznie.
      Dr Jennifer Ovenden uważa, że inne blisko spokrewnione rekiny i płaszczki z całego świata mogą zachowywać się podobnie. Dzikie hybrydy spotyka się zazwyczaj bardzo rzadko, dlatego znalezienie krzyżówek i ich potomstwa jest czymś niezwykłym. Hybrydyzacja może pozwalać rekinom przystosować się do zmian środowiskowych, ponieważ mniejsze C. tilstoni wolą obecnie tropikalne wody na północy, a większe żarłacze czarnopłetwe występują liczniej w subtropikalnych i umiarkowanych wodach wzdłuż południowo-wschodniej linii brzegowej Australii.
      Teraz naukowcy badają zasięg strefy krzyżowania oraz sprawność fizyczną hybryd.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...