Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Procedurą kluczową dla regeneracji rdzenia kręgowego po uszkodzeniu jest jak najszybsze uszczelnienie uszkodzonych błon komórkowych neuronów. Zwykle stosuje się w tym celu dożylne iniekcje glikolu polietylenowego (PEG), lecz metoda ta ma ograniczoną skuteczność. Badacze z Purdue University wykazali jednak, że terapię z wykorzystaniem PEG można znacząco ulepszyć.

Zespół magistrantki Yunzhou Shi skupił się na możliwości wykorzystania micel - dwuwarstwowych pęcherzyków zbudowanych z rdzenia zbudowanego z kwasu polimlekowego oraz powłoki złożonej z PEG. Zgodnie z założeniami kompleksy takie, nieprzekraczające rozmiaru 1/100 średnicy czerwonej krwinki, powinny posiadać "uszczelniające" właściwości glikolu, lecz być od niego znacznie mniej podatne na błyskawiczne usuwanie przez nerki i rozkład w wątrobie. 

Nowa metoda okazała się bardzo skuteczna. Z publikacji zaprezentowanej w czasopiśmie Nature Nanotechnology wynika bowiem, że podawanie micel szczurom pozwala na regenerację aksonów (wypustek pozwalających neuronom na komunikację z innymi komórkami) aż w 60% badanych neuronów. Dla porównania, czysty PEG radził sobie z tym zadaniem w zaledwie 18% przypadków.

Bardzo istotny jest także fakt, iż do uzyskania leczniczego efektu wystarczyło podanie roztworu micel o stężeniu 100 tys. razy mniejszym(!), niż stężenie wymagane dla osiągnięcia terapeutycznego działania tradycyjnego środka. Co więcej, w dotychczasowych badaniach nie stwierdzono niekorzystnych efektów ubocznych leczenia.

Aktualnie badacze z Purdue University planują przeprowadzenie dokładniejszych analiz, których zadaniem będzie ustalenie mechanizmów decydujących o przewadze micel nad tradycyjnymi roztworami. Niewykluczone, że zdobyta w ten sposób wiedza pozwoli na opracowanie jeszcze skuteczniejszych terapii urazów rdzenia kręgowego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy naukowcy z University of Chicago i Argonne National Laboratory porównali ponad 15 000 synaps u makaków i myszy, ze zdumieniem zauważyli, że neurony w korze wzrokowej makaków mają od 2 do 5 razy mniej synaps niż neurony u myszy. Różnica wynikać może prawdopodobnie z metabolicznego kosztu utrzymywania synaps. Naczelne uważane są za bardziej inteligentne od gryzoni, tymczasem okazuje się, że w neuronach myszy występuje więcej synaps.
      Po dokonaniu odkrycia naukowcy zasiedli do modelowania komputerowego, które wykazało, że im bardziej rozbudowana sieć neuronów, tym mniej synaps w każdym neuronie. Tworzenie i utrzymanie synaps jest tak kosztowne, że ich liczba jest ograniczana.
      David Freedman z UChicago i Narayanan Kasthuri z Argonne przyjrzeli się zarówno synapsom pobudzającym jak i hamującym. Większość wcześniejszych badań skupiała się na synapsach pobudzających. Za pomocą mikroskopu elektronowego wykonali obrazy 107 neuronów z kory wzrokowej makaków i 81 neuronów kory wzrokowej myszy. Okazało się, że w 107 neuronach makaków występuje niemal 6000 synaps, a w 81 neuronach myszy uczeni naliczyli ponad 9700 synaps. Bliższe analizy wykazały, że neurony makaków posiadają od 2 do 5 razy mniej połączeń synaps niż neurony myszy.
      To zaskakujące dlatego, że zarówno w neurologii jak i wśród ogółu społeczeństwa przyjęło się założenie, że im więcej połączeń między neuronami, tym wyższa inteligencja. Ta praca jasno pokazuje, że pomimo iż w mózgach naczelnych występuje większa liczba połączeń, to jeśli policzymy je nie ogólnie, a na poziomie pojedynczych neuronów, to naczelne mają mniej synaps. Jednocześnie wiemy, że neurony naczelnych są w stanie wykonywać działania, do których neurony myszy nie są zdolne. To zaś rodzi interesujące pytania, na przykład o konsekwencje budowy większych sieci neuronowych, takich jakie widzimy u naczelnych, wyjaśnia doktor Gregg Wildenberg z Argonne.
      Zawsze sądziliśmy, że zagęszczenie synaps u naczelnych będzie podobne do zagęszczenia u gryzoni, a może nawet większe, gdyż z mózgu naczelnych jest więcej miejsca i więcej neuronów. Jednak w świetle tego zaskakującego odkrycia musimy się zastanowić, dlaczego neurony naczelnych tworzą mniej połączeń niż się spodziewaliśmy. Sądzimy, że może to być skutkiem ewolucji. Być może różnica wynika z energetycznego kosztu utrzymania mózgu. Stworzyliśmy więc model sztucznej sieci neuronowej i ją trenowaliśmy, ale nałożyliśmy na nią ograniczenia narzucane przez metabolizm w prawdziwych mózgach. Chcieliśmy zobaczyć, jak wpłynie to na ilość połączeń w tworzącej się sieci, mówi Matt Rosen, który pomagał w modelowaniu komputerowym.
      Stworzony model uwzględniał dwa potencjalne koszty metaboliczne. Pierwszy to koszt pojedynczego sygnału elektrycznego przesyłanego między neuronami. Jest on bardzo duży. Drugi z uwzględnionych kosztów to koszt zbudowania i utrzymania synaps.
      Dzięki takiemu modelowi odkryli, że im więcej neuronów w sieci, tym większy koszt metaboliczny działania takiej sieci i tym większe ograniczenia w tworzeniu i utrzymywaniu synaps, co skutkuje ich zmniejszoną gęstością.
      Masa mózgu to jedynie około 2,5% masy ciała, jednak zużywa on około 20% całej energii organizmu. To bardzo kosztowny organ. Uważa się, że większość tej energii mózg przeznacza na synapsy, zarówno na komunikację między nimi, jak i na ich budowę i utrzymanie, dodaje Wildenberg.
      Niezwykłe odkrycie pomoże w przyszłych badaniach. Myślę, że wszyscy neurobiolodzy chcieliby zrozumieć, co czyni nas ludźmi. Co odróżnia nas od innych naczelnych i od myszy. Konektomika badania anatomię układu nerwowego na poziomie poszczególnych połączeń. Wcześniej nie rozumieliśmy dobrze, gdzie na tym poziomie znajdują się różnice, które mogłyby wyjaśnić ewolucję różnych rodzajów mózgu. Każdy mózg zbudowany jest z neuronów i każdy neuron łączy się i komunikuje z innymi neuronami. Jak więc ewolucja stworzyła różne mózgi? Trzeba przebadać wiele różnych gatunków, by zacząć rozumieć, co tutaj się stało.
      Ponadto lepsze zrozumienie zagęszczenia synaps, a zwłaszcza stosunku synaps pobudzających i hamujących, może pomóc w ustaleniu podstaw występowania takich chorób jak autyzm czy choroba Parkinsona. Jeśli zbadamy stosunek synaps pobudzających do hamujących u myszy i założymy, że jest on taki sam dla wszystkich gatunków, może to wpłynąć na rozumienie takich chorób. Znaleźliśmy różnice w stosunku synaps pobudzających i hamujących pomiędzy myszami a makakami. Teraz musimy się zastanowić, jakie ma to przełożenie na mysie modele chorób neurologicznych dotykających człowieka, dodaje Wildenberg.
      Szczegółowy opis badań został opublikowany na łamach Cell Reports.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Narodowych Instytutów Zdrowia (NIH) i Wydziału Medycyny Indiana University poinformowali, że zwiększenie dostaw energii do uszkodzonego rdzenia kręgowego myszy może pomóc w ponownym wzroście aksonów i w odzyskaniu części funkcji motorycznych.
      Regeneracja aksonów w centralnym układzie nerwowym to proces bardzo wymagający pod względem energetycznym. Uraz zewnętrzny i wewnętrzne ograniczenia prowadzą do kryzysu energetycznego w uszkodzonych aksonach, przez co rodzi się pytanie, jak deficyty energii wpływają na możliwości regeneracyjne. W naszych badaniach zauważyliśmy, że zwiększenie aksonalnego transportu mitochondrialnego poprzez usunięcie syntafiliny prowadziło do przywrócenia, utraconej w wyniku urazu, polarności błony mitochondrialnej, napisali autorzy badań. Syntafilina jest białkiem wspomagającym przyleganie mitochondriów do cytoszkieletu wewnątrz aksonów. Już z wcześniejszych badań wiemy, że usunięcie syntafiliny powoduje, iż mitochondria poruszają się szybciej.
      Wykorzystaliśmy trzy modele mysie uszkodzenia centralnego układu nerwowego. Wykazaliśmy za ich pomocą, że u myszy pozbawionych syntafiliny dochodzi do lepszej regeneracji drogi korowo-rdzeniowej przebiegającej przez miejsce urazu kręgosłupa, przyspieszonego odrastania aksonów w miejscu urazu oraz szybszego kompensacyjnego rozprzestrzeniania się aksonów w nieuszkodzonych fragmentach drogi korowo-rdzeniowej. Co istotne, zregenerowane aksony drogi korowo-rdzeniowej tworzą funkcjonujące synapsy i wspomagają odzyskanie fukcji motorycznych, stwierdzają autorzy badań.
      Doktor Zu-Hang Sheng z NIH, jeden z głównych autorów studium, powiedział, że jego zespół jest pierwszym, który wykazał, że w wyniku uszkodzenia rdzenia kręgowego dochodzi do kryzysu energetycznego, który jest bezpośrednio powiązany z ograniczeniem zdolności aksonów do regeneracji.
      Molekuły ATP, odgrywające kluczową rolę w wewnątrzkomórkowym transporcie energii, są wytwarzane w mitochondriach. Gdy dochodzi do uszkodzenia aksonów, zwykle też uszkodzone zostają mitochondria, co poważnie zakłóca produkcję ATP w uszkodzonych nerwach. Naprawa nerwów wymaga znacznych ilości energii. Wysunęliśmy hipotezę, że pourazowe uszkodzenie mitochondriów znacznie ogranicza dostawy ATP i to właśnie ten kryzys energetyczny uniemożliwia odrastanie i naprawę aksonów, wyjaśnia Sheng. Dodatkowym problemem jest fakt, że w dojrzałych nerwach mitochondria są zakotwiczone w aksonach, przez co, gdy dochodzi do ich uszkodzenia, trudno jest wymienić je na nieuszkodzone, co tylko zwiększa kryzys energetyczny.
      Dlatego też Sheng i jego zespół, bazując na swoich wcześniejszych pracach z myszami pozbawionymi syntafiliny, zaczęli przypuszczać, że zwiększenie transportu mitochondriów pozwoli na zastąpienie uszkodzonych nieuszkodzonymi.
      Ich hipotezy wydają się sprawdzać, przynajmniej na myszach. U zwierząt pozbawionych syntafiliny zaobserwowano bowiem znacznie większe odrastanie aksonów w miejscu uszkodzenia, niż w grupie kontrolnej. Okazało się też, że prowadziło to do poprawy funkcji motorycznych.
      Na kolejnym etapie badań myszom podawano kreatynę, która zwiększa produkcję ATP. W obu grupach myszy – grupie pozbawionej syntafiliny oraz grupie kontrolnej – zaobserwowano zwiększoną regenerację aksonów po podaniu tego środka w porównaniu z grupą, która otrzymywała placebo. Jednak w grupie pozbawionej syntafiliny regeneracja była silniejsza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mieszkaniec Gorzowa Wielkopolskiego odzyskał wzrok po... wypadku samochodowym. Wcześniej, przez ponad 20 lat był niewidomy. Janusz Góraj przechodził przez ulicę, gdy na przejściu dla pieszych potrącił go samochód.
      Upadłem na maskę samochodu, uderzyłem głową o tę maskę, później osunąłem się na jezdnię, mówił w wywiadzie dla Polsat News.
      Pan Góraj stracił wzrok z powodu ostrej alergii. Nie widział na jedno oko, w drugim widział tylko światło i kontury obiektów.
      Po wypadku został odwieziony do szpitala. Podczas pobytu w nim zaczął odzyskiwać wzrok w lewym oku. Dwa tygodnie później widział już wszystko wyraźnie.
      Ani pan Janusz, ani lekarze nie potrafią wyjaśnić, co się stało. Niewykluczone, że wzrok odzyskał dzięki lekom podawanym mu w trakcie leczenia ortopedycznego.
      Teraz mężczyzna odzyskał samodzielność. Znalazł też pracę ochroniarza w szpitalu, w którym odzyskał wzrok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Liczne badania wykazały, że używanie przez kierowców telefonów komórkowych w czasie jazdy znacznie zwiększa ryzyko wypadku. Sama rozmowa oznacza 4-krotnie większe prawdopodobieństwo kolizji, a wysyłanie SMS-ów zwiększa je aż 23 razy.
      Proponowane są usługi i aplikacje mające na celu zmniejszenie niebezpieczeństwa. Wszystkie one mają jednak pewną poważną wadę. Działają wówczas, gdy wykryją, iż telefon znajduje się w poruszającym się pojeździe. A to oznacza, że np. zablokowane mogą zostać również telefony pasażerów.
      Naukowcy z Rutgers University oraz Stevens Institute of Technology pracują nad rozwiązaniem, dzięki któremu możliwe będzie blokowanie tylko telefonu kierowcy, a pasażerowie będą mogli swobodnie korzystać ze swoich urządzeń. Uczeni wpadli na pomysł by skomunikować telefon za pomocą technologii Blutooth z systemem stereo w samochodzie. Stereo wysyła niesłyszalne dla ludzkiego ucha dźwięki, które są odbierane przez mikrofon telefonu. Specjalny algorytm wylicza pozycję telefonu w samochodzie, stwierdzając dzięki temu, czy jest on używany przez kierowcę, czy pasażera.
      Wokół tej technologii budowana jest też cała gama aplikacji pomocniczych. Powstaje na przykład program, który informuje osoby z listy kontaktów kierowcy o tym, że właśnie prowadzi on pojazd. Daje im też możliwość stwierdzenia, że rozmowa jest bardzo pilna i mimo to chcą nawiązać połączenie. Inny pomysł to połączenie systemu wykrywania pozycji telefonu z kalendarzem, dzięki czemu, jeśli w kalendarzu mamy zapisane jakieś spotkanie, na które właśnie jedziemy, będziemy mogli łatwo powiadomić uczestników spotkania, że się spóźnimy. Kierowca powinien mieć możliwość nawiązania połączenia za pomocą jednego przycisku. Bez konieczności wyszukiwania w menu kontaktów - mówi Marco Gruteser.
      Prototypowy system został zaprezentowany w laboratorium w ubiegłym roku, teraz jednak znacznie go udoskonalono. Przede wszystkim został już wbudowany w telefony, zintegrowano go z różnymi aplikacjami, a naukowcy pracują nad uproszczeniem algorytmu tak, by wykrywał położenie telefonu w samochodzie w ciągu 3-4 sekund zamiast obecnych 7-8 sekund.
      Gruteser mówi, że największym minusem systemu jest to, iż bazuje on na technologii Bluetooh. Jest ona niedostępna w znakomitej większości starszych modeli samochodów, a i nie wszystkie nowe są w nią wyposażone. Ponadto różne wymiary kabin samochodowych i różna konfiguracja głośników powodują, że wykrywanie nie działa idealnie. Obecnie system potrafi wykryć kierowcę z 90-procentową dokładnością.
    • przez KopalniaWiedzy.pl
      Palenie marihuany na 3 godziny przed prowadzeniem samochodu 1,92 razy zwiększa ryzyko wypadku, zwłaszcza ze skutkiem śmiertelnym.
      Zespół profesora Marka Asbridge'a z Dalhousie University przeprowadził metaanalizę 9 badań obserwacyjnych, w przypadku których łączna liczebność prób poszkodowanych w wypadkach osób wynosiła 49.411. Naukowcy wyliczyli prawdopodobieństwo wypadku, gdy palenie marihuany potwierdziły badania toksykologiczne pełnej krwi (występował w niej psychoaktywny metabolit THC - 11-OH-THC) albo sam kierowca wspominał, że palił 3 godziny przez wypadkiem lub później, a jednocześnie wykluczono picie alkoholu i zażywanie narkotyków innych niż marihuana.
      Nie wiadomo, jaki dokładnie poziom THC (tetrahydrokannabinolu) upośledza umiejętności psychomotoryczne potrzebne do prowadzenia pojazdów mechanicznych, ponieważ w większości studiów (6) poprzestawano na wykryciu THC we krwi, a tylko w 3 ustalano stężenie głównej substancji psychoaktywnej konopi. Mimo że nie sprawdzaliśmy wpływu dawki na ryzyko i powagę wypadku, badanie kierowców, którzy zginęli, ujawniło większe ilości THC we krwi. Choć stopień upośledzenia zdolności prowadzenia samochodu może nie być tak duży jak przy upojeniu alkoholowym, to jednak się pojawia i wymaga reakcji służb zdrowia publicznego [oraz ustawodawców] - napisano w raporcie opublikowanym na łamach British Medical Journal.
      Wiele z badań oceniających wpływ konopi na zdolność kierowania samochodem prowadzi się w laboratorium, dlatego choć mają one wysoką trafność wewnętrzną (na zmienną zależną wpływa tylko zmienna niezależna), nie wiadomo, jak wyniki uzyskane na symulatorze mają się do stylu prowadzenia prawdziwego auta. Ich uczestnikami dość często są palacze marihuany z długim stażem, którzy wykonują zadania nie odzwierciedlające złożoności jazdy w naturalnych warunkach. Z tego powodu naukowcy skoncentrowali się na studiach obserwacyjnych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...