Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Samice krabów uca, zwanych też skrzypkami, uprawiają seks ze swoimi sąsiadami, by ci pomagali im bronić norek przed innymi samcami (Biology Letters).

Przedstawiciele obu płci muszą bronić swoich wykopanych w błotnistym piasku nor, ale o ile samce dysponują dużymi szczypcami, samce mają tylko małe szczypczyki, służące do unoszenia do otworu gębowego fragmentów osadów. Cóż więc mogą począć w takiej sytuacji? Prof. Patricia Backwell i jej zespół z Australijskiego Uniwersytetu Narodowego wykorzystali wcześniejsze badania, w ramach których ustalono, że w pewnych okolicznościach samce wyświadczają samicom przysługę i stają się ich ochroniarzami. Wśród zwierząt to rzadkie zjawisko. Dotąd zaobserwowano je tylko u krabów uca oraz świergotków nadmorskich (Anthus petrosus).

Dla obrońcy takie pomaganie jest ryzykowne: może stracić powiększone szczypce, odnieść rany lub nawet zginąć. Poza tym podczas chronienia cudzej nory coś może się stać z jego własną, stojącą pod nieobecność właściciela otworem. Skoro jednak granice sąsiednich terytoriów zostały wcześniej ustalone, lepiej wspólnie chronić się przed innym, niekiedy groźniejszym wrogiem. Okazuje się też, że Uca annulipes nie bronią sąsiadek za darmo, ponieważ samice płacą im seksem.

Na samym początku studium biolodzy zbadali zwyczaje prokreacyjne krabów zamieszkujących przybrzeżną równinę błotną portu w Durbanie. W większości przypadków samice spółkowały w norze ze starannie wybranym samcem. Czasem jednak kopulacja odbywała się z sąsiadem, wtedy jednak samica "oddawała" mu się na powierzchni. Jeden z członków ekipy, prof. Michael Jennions, zaznacza, że skoro wybredne zazwyczaj samice nagle współżyją z całkowicie przeciętnymi samcami, muszą mieć z tego jakąś korzyść.

By stwierdzić jaką, Australijczycy przeprowadzili szereg prób na przybrzeżnych równinach błotnych Mozambiku. Do pancerza zwierzęcia przykleili łańcuch i umieszczali je w pobliżu wejścia do nory samicy (w ten sposób sztucznie "stworzyli" intruza). Kiedy osobnik na uwięzi był samcem, samiec z okolicznej nory przychodził sąsiadce z pomocą w 95% przypadków, a więc w 20 na 21 prób. Gdy jednak napastnikiem była samica, stawał się mniej rycerski i zjawiał się tylko w 15% sytuacji (w 3 na 20 podejść). Atak na intruza nie miał związku z jego rozmiarami.

Czemu warto pomagać samicy z norki obok? Ponieważ jest słabym i niewielkim sąsiadem, poza tym dobrze mieć w pobliżu chętną do kopulacji samicę. Na razie biolodzy nie ustalili, czy samiec nie zajmie się obroną sąsiadki, jeśli ta odmówi mu seksu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
samce dysponują dużymi szczypcami, samce mają tylko małe szczypczyki

to drugie-powinno być samice  8)

 

i prostytucja kwitnie  ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

I tam, od razu prostytucja, jak tu nie pomóc ładnej sąsiadce z cieknącym kranem. ;-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe, czy w przypadku "seksu powierzchniowego" samica zabezpiecza się przez zapłodnieniem?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

zapewne uzywa piasku i muszelek jako wkladki dopochwowej  ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Samce i samice nie tylko wykazują różne zachowania seksualne, ale różnice te są ewolucyjnie zaprogramowane, dowiadujemy się z nowych badań przeprowadzonych na Uniwersytecie Oksfordzkim. Zespół pod kierownictwem doktora Tesuyi Noimy i doktor Anniki Rings wykazał, że układ nerwowy obu płci, pomimo bardzo podobnej budowy, przekazuje różne sygnały samcom, a różne samicom.
      Naukowcy z Wydziału Fizjologii, Anatomii i Genetyki stwierdzili, że samce i samice muszek owocówek, pomimo niezwykle podobnego genomu i systemu nerwowego różnią się głęboko w sposobie inwestowania w strategie rozrodcze, które wymagają odmiennych adaptacji behawioralnych, morfologicznych i fizjologicznych.
      U większości gatunków zwierząt występują międzypłciowe różnice w kosztach reprodukcji. Samice często odnoszą największe korzyści z wydania na świat młodych jak najwyższej jakości, podczas gdy samce często odnoszą korzyści z łączenia się z jak największą liczbą samic. W wyniku ewolucji pojawiły się więc głębokie różnice, służące zaspokojeniu tych potrzeb.
      Uczeni z Oxfordu chcieli odpowiedzieć na pytanie, w jaki sposób różnice w międzypłciowych strategiach rozrodczych objawiają się na poziomie układu nerwowego i jak się mają do ograniczeń fizycznych, w tym ograniczeń dotyczących rozmiaru ciała czy wydatkowania energii, które są spowodowane faktem posiadania przez obie płcie bardzo podobnego genomu.
      Naukowcy odkryli, że w mózgach samic i samców – pomimo podobieństw genetycznych – istnieją różnice w niektórych obszarach mózgu. Pozwalają one na istnienie znacząco odmiennych strategii, pomimo niewielkich różnic w samej architekturze połączeń pomiędzy neuronami.
      Samce muszek owocówek zdobywają samice poprzez odpowiednie zachowania godowe. Zatem w ich strategii rozrodczej dużą rolę odgrywa możliwość gonienia samicy. Dla samic takie zachowania praktycznie nie mają znacznia. W ich przypadku ważny jest sukces potomstwa, a tutaj bardzo ważną rolę odgrywa umiejętność wyboru jak najlepszego miejsca złożenia jaj.
      Brytyjscy uczeni badali różnice w działaniu czterech grup neuronów umieszczonych parami po jednej w każdej z półkul mózgu samców i samic. Odkryli, że połączenia pomiędzy neuronami w tych grupach przebiegają nieco inaczej, w zależności od płci badanego zwierzęcia. Okazało się, że dzięki tym różnicom samce odbierają więcej bodźców wzrokowych, a samice – węchowych. Co więcej, uczeni wykazali, że to właśnie te różnice odpowiadają za różnice w zachowaniu zwierząt. W przypadku samców jest to sterowana wzrokiem zdolność do podążania za samicą, w przypadku samic – zdolność do wspólnego składania jaj w najlepszych miejscach.
      Te niewielkie różnice w połączeniach pomiędzy neuronami pozwalają na istnienie specyficznej dla płci strategii ewolucyjnej. Ostateczny cel tych różnic jest taki sam – odniesienie sukcesu reprodukcyjnego, stwierdzają autorzy badań.
      To pierwsze badania, które wykazały istnienie bezpośredniego silnego związku pomiędzy różnicami w budowie mózgu, a zachowaniami typowymi dla danej płci.
      Wcześniejsze badania na ten temat sugerowały, że istnienie międzypłciowych różnic w przetwarzaniu informacji sensorycznych może prowadzić do zachowań typowych dla płci. Jednak badania te ograniczały się do wykazania istnienia różnic neuroanatomicznych i fizjologicznych, bez udowodnienia ich związku z zachowaniami. My poszliśmy dalej. Powiązaliśmy anatomiczne różnice z charakterystyczną dla płci fizjologią, zachowaniem i rolami płciowymi, mówi profesor Stephen Goodwin, w którego zespole pracują autorzy badań.
      Artykuł A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behaviour jest dostępny na łamach Current Biology.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiemy, że kobiety żyją dłużej od mężczyzn. Średnia długość życia przedstawicielek płci pięknej jest o 7,8% większa, niż w przypadku panów. Jak się okazuje, ta różnica jest jeszcze większa w przypadku dziko żyjących ssaków. Przeciętna samica dzikiego ssaka żyje aż o 18,6% dłużej niż samiec
      Największą różnice widać u kitanki lisiej, lwów, łosi, orek, kudu wielkiego i owiec, mówi profesor Fernando Colchero z Interdyscyplinarnego Centrum Dynamiki Populacji na Uniwersytecie Południowej Danii. Uczony wraz ze swoimi współpracownikami zebrali dane demograficzne dotyczące ponad 130 populacji dzikich ssaków i określili zarówno średnią długość życia, jak i ryzyko zgonu jako funkcję wieku dla obu płci.
      Nie tylko okazało się, że samice żyją dłużej, ale również, że w większości populacji różnica ta jest większa niż w przypadku człowieka.
      Dla około połowy zbadanych przez nas populacji ryzyko zgonu związane z wiekiem jest bardziej wyraźne u samic, niż u samców mówi Colchero. To zaś oznacza, że większa długość życia samic ma prawdopodobnie związek z innymi czynnikami, z którymi zwierzęta stykają się w ciągu dorosłego życia.
      Powszechnie uważa się, że samce angażują się w potencjalnie niebezpieczną rywalizację seksualną i prowadzą bardziej ryzykowny tryb życia, co wpływa na ogólną średnią wieku. Jednak Colchero nie zauważył, by intensywność selekcji seksualnej miała bezpośredni wpływ na ryzyko zgonu wśród obu płci. Badania sugerują raczej, że ważniejsze są tutaj złożone interakcje pomiędzy cechami fizjologicznymi obu płci i warunkami środowiskowymi, w jakich żyją.
      Obserwowaliśmy spore różnice. W przypadku niektórych gatunków to samce żyją najdłużej. Widzimy tam jasny trend statystyczny, który może być wyjaśniany na wiele różnych sposobów, dodaje profesor Dalia Conde z Wydziału Biologii.
      Jedną z przyczyn, dla której samce żyją krócej, może być np. konieczność włożenia przez nich więcej energii w wyhodowanie cech potrzebnych do rywalizacji o samice, takich jak duże rogi. To wymaga sporo energii, a jeśli dany gatunek żyje w trudnych warunkach środowiskowych, to połączenie obu elementów może negatywnie wpływać na szanse na przeżycie. Inne możliwe wyjaśnienie mówi, że przyczyną są androgeny. Samce wytwarzają je więcej niż samice. Androgeny wpływają na wydajność układu odpornościowego, gdy jest ich zbyt dużo wpływ ten jest negatywny, przez co samce mogą być bardziej podatne na infekcje i różne choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pozbawione seksu samce muszek owocowych (Drosophila melanogaster) szukają ukojenia w alkoholu. Prof. Troy Zars, neurobiolog z University of Missouri, uważa, że zidentyfikowanie molekularnych i genetycznych mechanizmów kontrolowania zapotrzebowania na nagrodę może potencjalnie wpłynąć na rozumienie uzależnień od narkotyków i alkoholu u ludzi.
      Ostatnio akademicy z Uniwersytetu Kalifornijskiego w San Francisco zademonstrowali, że samce D. melanogaster, które wielokrotnie spółkowały w ciągu kilku dni, nie wykazywały preferencji w kierunku pożywienia zawierającego alkohol. Jeśli jednak samiec został odrzucony przez wybrankę lub nie miał dostępu do samic, pociąg do pokarmu zmieszanego z 15% alkoholem był u niego bardzo silny. Biolodzy uważają, że etanol zaspokajał zapotrzebowanie na fizyczną nagrodę.
      Podczas eksperymentów na UCSF samce D. melanogaster umieszczano albo w pojemnikach z dziewicami, albo z samicami, które już spółkowały. Podczas gdy te pierwsze szybko kopulują, te drugie tracą zainteresowanie amorami na czas oddziaływania substancji zwanej peptydem seksu. Samce wstrzykują ją w czasie spółkowania razem ze spermą.
      Odrzucone samce przestawały podejmować próby zdobycia samicy. Nie odzyskiwały wigoru i chęci nawet po umieszczeniu w pojemniku z dziewicami. Gdy zawiedzeni w miłości trafiali do pojemnika, gdzie mieli do dyspozycji 2 słomki: jedną zapewniającą czyste pożywienie, drugą z dostępem do jedzenia z domieszką alkoholu, można było zauważyć, że niezaspokojenie seksualne zwiększało chęć korzystania z procentów.
      Amerykanie tłumaczą, że kopulacja podwyższa, a deprywacja zmniejsza poziom neuropeptydu F (NPF). Z kolei aktywacja lub inhibicja układu NPF ogranicza albo wzmacnia preferencje alkoholowe. Uzyskane wyniki łączą zatem doświadczenia seksualne (społeczne), aktywność układu NPF i spożycie etanolu. Sztuczna aktywacja neuronów NPF jest nagradzająca sama w sobie i eliminuje zdolność nagradzającą alkoholu. Wg naukowców, aktywność osi NPF-receptor NPF oddaje stan układu nagrody muszki i odpowiednio modyfikuje zachowanie.
      Podczas doświadczeń Heberlein, Shohat-Ophir i inni zauważyli, że analogiczne zachowania da się wywołać za pomocą manipulacji genetycznych. Aktywując produkcję neuropeptydu F w mózgach samców, które nigdy nie spółkowały, można sprawić, że zachowują się one jak osobniki zaspokojone seksualnie, co przejawia się m.in. ukróceniem spożycia alkoholu. Z drugiej strony, obniżenie liczby receptorów NPF u samców po kopulacji sprawia, że zachowują się, jakby doznały odrzucenia (objawia się to wzmożonym piciem).
      Jako komentator ustaleń ekipy doktora Galita Shohata-Ophira Zars podkreśla, że pokusa przełożenia wyników badań na muszkach na człowieka jest ogromna, zwłaszcza że u ssaków występuje homolog neuropeptydu F - neuropeptyd Y (NYP). Na razie jednak trudno ferować ostateczne wyroki w tej sprawie.
      Jeśli okaże się, że neuropeptyd Y jest przetwornikiem między stanem psychicznym a tendencją do nadużywania alkoholu i narkotyków, będzie można opracować metody terapii bazujące na hamowaniu receptorów NYP - wyjaśnia dr Ulrike Heberlein z UCSF. Trwają właśnie testy kliniczne, w ramach których sprawdza się, czy podanie neuropeptydu Y usuwa niepokój i inne zaburzenia nastoju. Skądinąd wiadomo bowiem, że w depresji i zespole stresu pourazowego, jednostkach chorobowych, które dość często wiążą się z nadużywaniem alkoholu i narkotyków, poziom neuropeptydu Y w mózgu spada. Manipulowanie poziomem NYP nie wydaje się jednak takie proste, ponieważ występuje on w całym mózgu i jak zademonstrowały badania na gryzoniach, wpływa na wiele funkcji, w tym odżywianie i sen.
    • przez KopalniaWiedzy.pl
      Artykuł dotyczący nowotworu pyska u diabłów tasmańskich to druga w ostatnim czasie dobra wiadomość, która może pomóc w ocaleniu gatunku. Z magazynu Cell dowiadujemy się, że nowotwór pochodzi od jednej samicy, która zachorowała przed 15 laty.
      Populacja diabła tasmańskiego jest od lat dziesiątkowana przez zaraźliwy nowotwór pyska. Gatunkowi grozi całkowite wyginięcie, co oznaczałoby stratę nie tylko diabła, ale również zagroziłoby całemu ekosystemowi, gdyż kontroluje on populacje inwazyjnych dzikich kotów i lisów, które wyniszczą inne gatunki gdy diabła zabraknie.
      Opisywane w Cell badania pokazały, że wszystkie nowotwory u wszystkich zwierząt zawierają komórki pierwotnego nosiciela. Nazywam ją nieśmiertelnym diabłem. Jej komórki żyją długo po jej śmierci - mówi Elizabeth Murchison, badaczka z Wellcome Trust Sanger Institute.
      Nowotwór występujący u diabłów tasmańskich to jedyny nowotwór, który zagraża egzystencji całego gatunku - dodaje.
      Naukowcy przebadali próbki nowotworu pobrane od 104 osobników schwytanych w różnych miejscach Tasmanii. Chociaż same nowotwory różniły się od siebie, to wszystkie zawierały komórki tej samej samicy. Zsekwencjownowanie genomu pozwoliło nam na zbadanie mutacji, które przyczyniły się do rozwoju nowotworu - mówi Murchison. Naukowcy mają nadzieję, że dalsze badania pozwolą na opracowanie odpowiedniego leku. Zbadanie ewolucji choroby i jej sposobu rozprzestrzeniania się pozwala nam zrozumieć jej przyczyny oraz przewidzieć, jak może się ona rozwijać w przyszłości - powiedział David Bentley, szef zespołu naukowego z Illumina Cambridge Ltd.
      Nowotwór pyska diabłów tasmańskich ma ponad 17 000 różnych mutacji. To mniej mutacji niż znajdujemy u niektórych nowotworów występujących u ludzi, a to oznacza, że nowotwory nie muszą być skrajnie niestabilne by stały się zaraźliwe - mówi Bentley. Dotychczas znaliśmy jeden zaraźliwy nowotwór - przenoszony drogą płciową nowotwór atakujący psy i wilki.
      Badania nad chorobą dziesiątkującą diabła tasmańskiego mogą uratować nie tylko ten gatunek, ale również przygotować naukowców na wypadek wystąpienia zaraźliwego nowotworu u ludzi.
    • przez KopalniaWiedzy.pl
      Rośliny przewidują porę dnia, kiedy napadną na nie chmary głodnych owadów i przygotowują się, by je odstraszyć, uruchamiając hormonalną broń.
      Kiedy przechodzisz obok roślin, nie wyglądają, jakby cokolwiek robiły. Intrygująco jest obserwować całą tę aktywność na poziomie genetycznym. To jak przyglądanie się oblężonej fortecy w stanie pełnej mobilizacji - opowiada prof. Janet Braam z Rice University, dodając, że naukowcy od dawna wiedzieli, że rośliny dysponują zegarem biologicznym, który pozwala im mierzyć czas bez względu na warunki oświetleniowe. Liście niektórych roślin podążają np. za przesuwającym się po nieboskłonie słońcem, a nocą "resetują się", zwracając się w kierunku wschodu.
      Ostatnimi czasy biolodzy ustalili, że aż ok. 1/3 genów rzodkiewnika pospolitego (Arabidopsis thaliana) jest aktywowanych przez rytm okołodobowy. Zastanawialiśmy się, czy niektóre z tych regulowanych rytmem okołodobowym genów mogą pozwalać na przewidywanie ataków owadów w sposób analogiczny do przewidywania świtu - opowiada Michael Covington (obecnie z Uniwersytetu Kalifornijskiego w Davis).
      Aby znaleźć odpowiedź na to pytanie, studentka Danielle Goodspeed zaprojektowała eksperyment. Wykorzystała 12-godzinny cykl świetlny. W ten sposób zaprogramowała zegary biologiczne roślin i gąsienic błyszczki ni (Trichoplusia ni), które żywią się liśćmi A. thaliana. Połowę roślin umieszczono z gąsienicami przyzwyczajonymi do regularnego i takiego samego jak one cyklu dzień-noc, natomiast reszta rzodkiewników stykała się z gąsienicami z przesunięciem faz - ich zegary były ustawione na dzień, który przypadał na porę będącą dla rzodkiewników nocą itd.
      Odkryliśmy, że rośliny wyregulowane na tę samą fazę co gąsienice błyszczki były stosunkowo oporne, natomiast okazy z przesunięciem faz ulegały zniszczeniu przez żerujące na nich gąsienice.
      Razem z Wassimem Chehabem Goodspeed badała akumulację hormonu jasmonianu, wykorzystywanego przez rośliny do wytwarzania metabolitów wpływających na żerowanie owadów (pod wpływem uszkodzenia mechanicznego następuje skok syntezy jasmonidów, a następnie uruchomienie biosyntezy enzymów odpowiedzialnych za gromadzenie się fitoaleksyn oraz inhibitorów proteinaz; blokują one aktywność proteinaz owadów, którym odcina się w ten sposób dostęp do białek rośliny). Naukowcy stwierdzili, że w ciągu dnia, gdy gąsienice T. ni są najbardziej napastliwe, rzodkiewniki nasilają produkcję hormonu. Okazało się, że rośliny wykorzystują zegar biologiczny do wytwarzania innych związków obronnych, np. zapobiegających infekcjom bakteryjnym.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...