-
Similar Content
-
By KopalniaWiedzy.pl
Dwie kalifornijskie firmy, Upside Foods oraz Eat Just, dostały od Departamentu Rolnictwa zgodę na sprzedaż kurzego mięsa pochodzącego z hodowli tkankowych. Tym samym mogą rozpocząć komercyjną produkcję i sprzedaż takiego mięsa na terenie USA. To niezwykle istotne wydarzenie dla całego przemysłu zainteresowanego produkcją mięsa z tkanek, gdyż Stany Zjednoczone to jeden z najważniejszych, o ile nie najważniejszy, rynek na świecie. Pierwszym krajem, który dopuścił sprzedaż takiego mięsa był Singapur. W 2020 roku odpowiednie zezwolenie otrzymała tam firma Good Meat, która jest wydziałem Eat Just.
O dopuszczeniu produktu żywnościowego na rynek USA decydują dwie agendy rządowe – Administracja ds. Żywności i Leków (FDA) oraz Departament Rolnictwa (DoA). FDA odpowiada za zbadanie bezpieczeństwa samego produktu, rolą DoA jest sprawdzenie całego ciągu produkcyjnego pod kątem bezpieczeństwa i spełniania odpowiednich wymagań. Zgody od FDA obie firmy otrzymały w ciągu ostatnich miesięcy.
Upside Foods i Eat Just – oraz inne podobne im firmy – produkują swoje mięso używając komórek zwierzęcych, które namnażają w bioreaktorach. Teraz takie mięso można będzie sprzedawać w USA jako „kurczaka z hodowli komórkowych”.
Oba wspomniane przedsiębiorstwa planują najpierw sprzedaż swojego mięsa do restauracji. Na sprzedaż detaliczną klientom indywidualnym przyjdzie pora w następnej kolejności. Na razie wiadomo, że mięso Eat Just w pierwszej kolejności trafi do nieujawnionej jeszcze restauracji w Waszyngtonie, natomiast kurczaka z Upside Foods można będzie spróbować już pod koniec lata w lokalu Bar Crenn w San Francisco.
Uzyskane przez nas zezwolenie zupełnie zmieni sposób, w jaki mięso trafia na nasze stoły. To wielki krok w kierunku bardziej zrównoważonej przyszłości, takiej, która szanuje wybór i życie. Nie możemy się doczekać, aż konsumenci skosztują przyszłości, mówi doktor Uma Valeti, dyrektor Upside Foods.
« powrót do artykułu -
By KopalniaWiedzy.pl
Szybką i bezbłędną klasyfikację białek, wykrywanie w nich miejsc wiążących potencjalne leki, identyfikowanie białek występujących na powierzchni wirusów, a także badania np. RNA, umożliwia nowe narzędzie bioinformatyczne opracowane przez naukowców z Wydziału Biologii UW.
BioS2Net, czyli Biological Sequence and Structure Network, jest zaawansowanym algorytmem wykorzystującym uczenie maszynowe, pozwalającym na klasyfikację nowo poznanych białek nie tylko na podstawie podobieństwa sekwencji aminokwasowych, ale także ich struktury przestrzennej. Publikacja na jego temat ukazała się na łamach pisma International Journal of Molecular Sciences.
Narzędzie opracował zespół kierowany przez dr. Takao Ishikawę z Zakładu Biologii Molekularnej Wydziału Biologii UW we współpracy z naukowcem z Wydziału Matematyki, Informatyki i Mechaniki UW. Jak mówią sami autorzy, jego głównym zastosowaniem jest usprawniona klasyfikacja białek, ponieważ obecnie stosowany system klasyfikacji strukturalnej opiera się na żmudnej pracy polegającej na porównywaniu struktur nowych białek do tych już skategoryzowanych.
Istnieje co prawda jego zautomatyzowany odpowiednik, jednak jest on bardzo restrykcyjny i bierze pod uwagę wyłącznie podobieństwo sekwencji białek, całkowicie pomijając ich strukturę. Takie narzędzie jak BioS2Net potencjalnie ma szansę znacząco usprawnić cały proces – wyjaśnia dr Ishikawa. Dodatkowo opracowana przez nas architektura może zostać użyta (po niewielkich przeróbkach) do innych zadań, niekoniecznie związanych z klasyfikacją. Przykładowo można by jej użyć do wykrywania w białku miejsc wiążących potencjalne leki lub do identyfikacji białek występujących na powierzchni wirusów.
Można sobie np. wyobrazić sytuację, w której dotychczas zaklasyfikowane do innych grup białka, dzięki zastosowaniu BioS2Net zostaną skategoryzowane jako bardzo podobne do siebie pod względem budowy powierzchni, mimo innego zwinięcia łańcucha białkowego wewnątrz struktury. I wówczas niewykluczone, że cząsteczka oddziałująca z jednym białkiem (np. jako lek) okaże się także skutecznym interaktorem dla drugiego – wymienia dalsze potencjalne zastosowania praktyczne narzędzia dr Ishikawa. Innym ciekawym zastosowaniem mogłoby być np. wykrywanie miejsc wiążących w białkach, które mogą stanowić albo cel dla leków, albo punkt interakcji z białkiem wirusowym.
Działanie BioS2Net opiera się na wykonywanych po sobie operacjach matematycznych, które bazują na danych o konkretnym białku. Do pracy narzędzie potrzebuje tychże danych (im więcej, tym lepiej), odpowiedniego oprogramowania zdolnego do wykonywania skomplikowanych obliczeń związanych z treningiem sieci neuronowej oraz sporej ilości czasu.
W efekcie BioS2Net tworzy unikatową reprezentację każdego białka w postaci wektora o stałym rozmiarze. Można to porównać do czegoś w rodzaju kodu kreskowego opisującego każde z poznanych białek – tłumaczy dr Ishikawa. Narzędzie świetnie nadaje się do klasyfikacji białek na podstawie sekwencji aminokwasowej oraz struktury przestrzennej. Szczególnie istotne jest to, że można dzięki niemu wykryć białka o podobnej strukturze trójwymiarowej, ale o odmiennym „foldzie”, czyli innym sposobie zwinięcia łańcucha białkowego.
Dotychczas stosowane metody przydzielałyby takie białka do osobnych grup. Tymczasem znane są przypadki, gdy tego typu cząsteczki pełnią podobne funkcje. I do wykrywania takich grup białek może się przydać BioS2Net – dodaje.
Jak mówi naukowiec, nowe białka odkrywa się cały czas. Zdecydowana większość z nich, jeśli już ma opisaną strukturę przestrzenną, jest deponowana w bazie danych Protein Data Bank, do której każdy ma dostęp przez Internet. Warto jednak zwrócić uwagę, że proces odkrywania nowych białek rozpoczyna się o wiele wcześniej, już na etapie sekwencjonowania genomu. W bazach danych genomów często można spotkać się z adnotacją ’hypothetical protein’ (pol. hipotetyczne białko). Istnieją algorytmy komputerowe, które na podstawie sekwencji nukleotydowych w zsekwencjonowanym genomie przewidują obszary przypominające geny, które potencjalnie kodują informację o białkach. I takich potencjalnych białek znamy bardzo wiele. Ich funkcje można częściowo przewidzieć na podstawie podobieństwa do cząsteczek już wcześniej opisanych, ale do pełnego poznania takiej roli i mechanizmu działania często jednak należy najpierw ustalić ich strukturę, co wymaga miesięcy lub lat eksperymentów – opowiada badacz z UW.
W przypadku białek podobna sekwencja aminokwasów z reguły przekłada się na podobną strukturę. Do niedawna był to wręcz dogmat w biologii strukturalnej. Dzisiaj jednak wiadomo – mówi dr Ishikawa – że wiele białek jest inherentnie nieustrukturyzowanych (IDP; ang. intrinsically disordered protein) albo przynajmniej zwiera w sobie tego typu rejony. Takie białka mogą przyjmować różne struktury w zależności od tego z jakimi innymi białkami w danym momencie oddziałują.
Dodatkowo bardzo istotny jest cały kontekst, w jakim białko ulega pofałdowaniu. Przykładowo, obecność tzw. białek opiekuńczych, czy nawet samo tempo syntetyzowania białka w komórce, może mieć niemały wpływ na ostateczny jego kształt, a zatem też na funkcje. Nie zmienia to jednak faktu, że cechą fundamentalną każdego białka jest jego sekwencja aminokwasowa – podkreśla.
A dlaczego w ogóle poznanie dokładnej budowy cząsteczki białka jest takie ważne? Autor publikacji wyjaśnia, że białka, realizując swoje zadania w komórce, zawsze przyjmują określoną strukturę. Np. jeśli chcemy zaprojektować nowy lek, który będzie oddziaływał z określonym białkiem, to fundamentalne znaczenie ma określenie struktury tego drugiego. W trakcie pandemii SARS-CoV-2 trzeba było np. określić strukturę wirusowego białka S (tzw. kolca) m.in. po to, aby można było zaproponować cząsteczkę swoiście z nim oddziałującą, a przez to zmniejszyć wydajność zakażania komórek człowieka – mówi. Podsumowując: badanie struktury białek ma ogromne znaczenie dla poznania ich funkcji i mechanizmu działania, a także innych cząsteczek z nimi oddziałujących.
Jeśli chodzi o sam BioS2Net, to najpierw należy ściągnąć z bazy danych i przetworzyć informacje o danym białku. Przetwarzanie służy temu, aby wszystkie cechy białka, takie jak współrzędne atomów, rodzaje aminokwasów, profil ewolucyjny itd., zamienić na liczby, które będą zrozumiałe dla komputera. Każdy pojedynczy atom cząsteczki jest opisywany przez kilkadziesiąt liczb, które wyrażają wspomniane cechy.
Następnie liczby te wprowadza się do sieci neuronowej, która analizuje każdy z atomów oraz ich najbliższych sąsiadów, biorąc pod uwagę zarówno ich ułożenie przestrzenne, jak i sekwencyjne. Kolejny etap to łączenie grup atomów w jeden „superatom”, który zawiera w sobie całą wyuczoną lokalną informację. Proces ten powtarza się do momentu aż ów „superatom” będzie zawierał zagregowane informacje o całym białku. To jest nasz kod kreskowy, który wykorzystujemy potem do klasyfikacji białka, używając standardowych sieci neuronowych – zaznacza dr Ishikawa.
Zapytany o dokładność nowego narzędzia biolog wyjaśnia, że jeśli chodzi o wytworzenie unikatowego wektora reprezentującego poszczególne białka, to BioS2Net robi to bezbłędnie, tzn. że każde białko jest reprezentowane w jedyny możliwy sposób i żadna inna cząsteczka nie będzie opisana w taki sam sposób.
Natomiast, gdy zastosowaliśmy BioS2Net do klasyfikacji białek, osiągnęliśmy wynik nawet 95,4 proc. trafności w porównaniu do obowiązującej klasyfikacji wg bazy danych. Oznacza to, że w ponad 95 przypadków na 100 BioS2Net był w stanie prawidłowo przyporządkować białko do danej grupy. Tutaj jednak warto wspomnieć, że ta obowiązująca klasyfikacja opiera się na podobieństwie sekwencji aminokwasowych i pomija informacje strukturalne – tłumaczy autor publikacji.
Naukowcy podkreślają, że poza głównym zastosowaniem, czyli klasyfikacją białek, BioS2Net będzie mógł służyć także do analizowania innych cząsteczek biologicznych, w tym RNA. Uważamy, że narzędzie można by też wykorzystywać do klasyfikacji zupełnie innych danych biologicznych, np. map chromosomów w jądrze komórkowym. Właściwie to nasza architektura może być przydatna wszędzie tam, gdzie jest zdefiniowana struktura i sekwencja – mówią.
Dr Ishikawa dodaje, że BioS2Net powstał w ramach pracy licencjackiej pierwszego autora (jego Alberta Roethla) wykonanej pod kierunkiem. Warto to podkreślić, bo to ważny sygnał, że licencjat niekoniecznie jest pracą dyplomową, którą po prostu trzeba zrobić, ale czymś, co ma potencjał naukowy i może zostać opublikowane w międzynarodowym czasopiśmie – zaznacza naukowiec.
« powrót do artykułu -
By KopalniaWiedzy.pl
W łódzkim Bionanoparku powstanie laboratorium firmy NapiFeryn Bio Tech. Będzie w nim produkowane białko z rzepaku, które może zrewolucjonizować i rynek spożywczy, i naszą dietę. W działającej już prototypowej linii produkcyjnej powstaje tygodniowo kilka kilogramów izolatu białkowego (>90% białka) i koncentratu białkowo-błonnikowego (ok. 30% białka). Oba te produkty mogą być stosowane jako dodatki do słodyczy, makaronów, sosów, napojów, pieczywa czy wegańskich zamienników mięsa.
Rzepak, w odróżnieniu od soi, uprawiany jest lokalnie – nie trzeba go importować ani zwiększać jego upraw, ponieważ w procesie pozyskiwania białka wykorzystuje się pozostałości po tłoczeniu oleju rzepakowego. Jest to alternatywne rozwiązanie dla białka zwierzęcego, przyjazne naturze – zostawia znacznie mniejszy ślad węglowy, stwierdziła Magdalena Kozłowska, prezes NapiFeryn BioTech. Białko z rzepaku ma doskonałe wartości odżywcze. Jest łatwo trawione i przyswajalne przez ludzki organizm.
Dotychczasową przeszkodą w stosowaniu go w przemyśle spożywczym był jego charakterystyczny, gorzki posmak. Technologia opatentowana przez nas całkowicie ten problem usuwa. Nasze białko jest nie tylko zdrowe, ale też smaczne, mówi Piotr Wnukowski, wiceprezes firmy.
Co prawda produkt jest testowany też przez firmę w eksperymentalnej kuchni, jednak NapiFeryn BioTech nie chce produkować żywności, ale licencjonować swój produkt koncernom spożywczym. Produkty zawierające białko rzepakowe mogą trafić do sklepów już w ciągu 2-3 lat.
Izolat z białka z rzepaku został uznany za produkt bezpieczny i jest dopuszczony przez UE do stosowania w przemyśle spożywczym.Obecnie firma przygotowuje się do zarejestrowania koncentratu błonnikowo-białkowego.
« powrót do artykułu -
By KopalniaWiedzy.pl
Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością.
Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia.
Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg.
Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się.
Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wielokrotnie mogliśmy się przekonać, że jeśli nie używamy jakichś mięśni, to one zanikają. Jeszcze do niedawna naukowcy sądzili, że wraz z zanikaniem mięśni zanikają też jądra komórek, które je tworzyły. Jednak z najnowszego artykułu opublikowanego we Frontiers in Physiology dowiadujemy się, że jądra komórkowe, które zyskaliśmy podczas treningu, zostają zachowane, nawet jeśli włókna mięśniowe zanikają.
Te pozostałe jądra działają jak „pamięć” mięśni, dzięki której, gdy wrócimy do treningu, szybciej jesteśmy w stanie mięśnie odzyskać. Naukowcy sądzą, że mechanizm ten ma zapobiegać zbytniej utracie masy mięśniowej w późniejszym wieku, gdy nie jesteśmy już tak aktywni, co w wieku nastoletnim. Wskazuje to również, że łatwo jest przeoczyć sportowca, który oszukuje i wspomaga rozwój mięśni środkami dopingującymi.
Największe komórki w ciele człowieka, to właśnie komórki mięśniowe. W mięśniach poprzecznie prążkowanych tworzą one syncytia, czyli więlojądrowe komórki powstające poprzez połączeni luźnych komórek jednojądrowych. Syncytia zachowują się jak jedna wielka komórka. Syncytia występują w sercu, kościach czy łożysku. Jednak największe komórki i największe syncytia znajdziemy w naszych mięśniach, mówi profesor Lawrence Schwartz z University of Massachusetts.
Wzrostowi mięśni towarzyszy dodawanie nowych jąder komórkowych z komórek macierzystych. Pozwala to na zaspokojenie zapotrzebowania rosnących komórek. To doprowadziło do pojawienia się hipotezy, każde jądro kontroluje ściśle zdefiniowaną objętość cytoplazmy, więc gdy masa mięśniowa się zmniejsza, czy to wskutek choroby czy ich nieużywania, zmniejsza się też liczba jąder komórek mięśni, dodaje uczony. Przypuszczenia takie miały o tyle mocne podstawy, że naukowcy badający tkankę mięśniową ulegającą atrofii donosili i obecnych w nich rozpadających się jądrach komórkowych. Dopiero jednak najnowsze techniki badawcze pozwoliły stwierdzić, że te rozpadające się jądra komórkowe nie pochodzą z komórek mięśni, ale z innych komórek, które pojawiły się w przeżywającej problemy tkance mięśniowej.
Dwa niezależne badania, jedno przeprowadzone na gryzoniach, a drugie na owadach, wykazały, że podczas atrofii włókien mięśniowych nie dochodzi do utraty jąder komórkowych, stwierdza Schwartz w swoim artykule. Niewykluczone, że jądro komórkowe, które pojawiło się w mięśniach, pozostaje w nich na zawsze. Profesor Schwartz nie jest zaskoczony takimi wynikami. Mięśnie ulegają uszkodzeniu podczas intensywnych ćwiczeń, często zachodzą w nich zmiany związane z dostępnością pożywienia i innymi czynnikami środowiskowymi prowadzącymi do atrofii. Nie przetrwałyby długo, gdyby przy każdym takim zdarzeniu traciły jądra komórkowe, stwierdza.
Skoro więc jądra komórkowe pozostają, to wiemy już, dlaczego łatwo jest odzyskać raz utraconą tkankę mięśniową. Dobrze udokumentowany jest fakt, że jest znacznie łatwiej odzyskać pewien poziom utraconej masy mięśniowej niż ją zbudować od podstaw, nawet jeśli przez długi czas nie ćwiczyliśmy. Innymi słowy, zamiast stwierdzać, że nieużywane mięśnie zanikają, powinniśmy powiedzieć, że nieużywane mięśnie zanikają, dopóki nie zaczniemy ich znowu używać.
Odkrycie to pokazuje, jak ważne jest zbudowanie masy mięśniowej w młodości. Wówczas jesteśmy bardziej aktywni fizycznie, a wzrost masy mięśniowej jest wspomagany poprzez hormony, większy apetyt i duże zapasy komórek macierzystych. To idealny moment, by zbudować sobie zapas jąder komórkowych w mięśniach. Mogą się one przydać po wielu latach, gdy będziemy potrzebowali szybko nadrobić utraconą masę mięśniową, co pomoże nam w zachowaniu dobrego stanu zdrowia i niezależności w sędziwym wieku.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.