Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W piątek, 9 października, o godzinie 21 na kanale Discovery Science będzie miała miejsce premiera nowej serii "Kosmiczne wyzwania".

Czy człowiek rzeczywiście może żyć w kosmosie? Czy gatunek ludzki może przetrwać na planetach, na których temperatury wahają się od minus 149 aż do plus 427 stopni Celsjusza? Jak pokonać zabójcze promieniowanie na lodowym księżycu Jowisza i maksymalnie silną grawitację na Merkurym?

Gospodarz programu, uznany fizyk Basil Singer, niezrażony początkowymi trudnościami szuka odpowiedzi na te pytania. Naszej planecie zagrażają liczne niebezpieczeństwa i nie wiadomo, jak długo będziemy mogli korzystać z gościny na Ziemi. Trzeba szukać alternatywnego miejsca do życia i właśnie w tym programie dowiesz się, jakie ciała niebieskie byłyby dla nas najlepszym obiektem przyszłej kolonizacji.

W każdym odcinku programu "Kosmiczne wyzwania" Basil będzie symulował warunki panujące w odległych światach używając najnowszych technologii i symulacji komputerowych. W ten sposób sprawdzi, czy Merkury, Wenus, Mars, księżyc Saturna Tytan lub któryś z księżyców Jowisza: Kallisto, albo Gliese 581c, mogłyby kiedyś stać się nowym domem ludzkości.

Zobaczymy, jak dr Singer wystawia się na działanie skrajnych temperatur, testuje nowoczesne technologie, zaprojektowane, by utrzymać ludzi przy życiu w nieprzyjaznym środowisku, znosi trudne warunki narzucone przez podróż w zerowej grawitacji, a także sprawdza realność wizji naukowców, mających umożliwić ludziom tworzenie siedlisk poza Ziemią.

Po zgromadzeniu potrzebnych informacji opracowuje je w swym centrum przetwarzania danych. W ten sposób tworzy wiedzę, dzięki której przyszli pionierzy kosmosu będą mogli zaplanować udaną podróż do nowej ludzkiej siedziby gdzieś w przestrzeni kosmicznej.

Tytan na początek

W pierwszym odcinku Basil Singer będzie badał możliwość kolonizacji Tytana, księżyca Saturna. To jedno z ciał najbardziej podobnych do Ziemi w Układzie Słonecznym. Zaglądając pod pomarańczowe chmury Tytana, odkrywamy swojski krajobraz dolin, jezior i rzek. Jednak to wszystko, co widzimy, to nie woda, lecz skupiony metan, tworzący w stanie płynnym jeziora. Wydobywa się on także z lodowych wulkanów.

Jedynie Tytan posiada gęstą atmosferę, gęstszą nawet od ziemskiej. Ma ona pomarańczowy kolor i jest niemal nieprzeźroczysta dla światła, w szerokim zakresie fal.


Atmosfera składa się głównie z azotu z domieszkami argonu, metanu i innych związków organicznych, takich jak etan i acetylen, które powstają w górnych warstwach atmosfery w wyniku oddziaływania na metan promieniowania ultrafioletowego pochodzącego ze Słońca. Tytan nie posiada własnego pola magnetycznego, a magnetosfera Saturna chroni go przed wiatrem słonecznym tylko częściowo. Związki chemiczne w atmosferze Tytana przepuszczają jedynie około 10% promieni słonecznych, co prowadzi do utrzymywania się bardzo niskiej temperatury na powierzchni - człowiek musiałby przetrwać tam okrutne zimno - temperatury dochodzące do minus 149 stopni Celsjusza. Ciśnienie przy powierzchni wynosi 1,5 bara, czyli jest o 50% większe niż na Ziemi. Ludziom przeszkadzałby także silny wiatr, stale wiejący z prędkością 60 km/h. Atmosfera Tytana jest bardzo podobna do tej, jaką posiadała Ziemia około 4 miliardów lat temu.

Ludzie musieliby zmierzyć się mieszkaniem na grubej powłoce lodowej, z jakiej zbudowany jest ten księżyc. Zamiast cieszyć się urokiem kąpieli wodnych, napotkalibyśmy olbrzymie morza ciekłego metanu i innych węglowodorów. Innym zaskoczeniem byłyby z pewnością kriowulkany - wyrzucające z siebie mieszaninę lodu wodnego i metanu. Zamiast gór, do jakich jesteśmy przyzwyczajeni, napotkalibyśmy na ogromne wydmy, złożone nie z piasku, a z drobin wodnego lodu lub związków organicznych.

Autorzy science fiction od dawna typowali Tytana jako dobre miejsce do zamieszkania i okazuje się, że przy wykorzystaniu pewnych technologii umożliwiających przetrwanie kolonizacja Tytana może być możliwa.

Share this post


Link to post
Share on other sites

O proszę, ankiety na Kopalni. ;) Bardzo fajne urozmaicenie dla takich ogólnych newsów.

 

Trzeba szukać alternatywnego miejsca do życia i właśnie w tym programie dowiesz się, jakie ciała niebieskie byłyby dla nas najlepszym obiektem przyszłej kolonizacji.

 

Jak to trzeba? Po co? Osobiście jedynie wyobrażam sobie w przyszłości kolonię na Marsie i może jakąś bazę na Księżycu. Ewentualnie w bardzo dalekiej przyszłości jakieś moduły laboratoryjne z minimalną załogą na wspomnianych ciałach niebieskich, a nie kolonie. Choć do tego czasu technologia znacznie bardziej się rozwinie i raczej będą to zautomatyzowane obiekty. Utrzymanie na nich kolonii zwyczajnie nie opłacałoby się, bo po prawdzie:

 

Wenus - olbrzymie ciśnienie, żrąca atmosfera, piekarnik

Merkury - olbrzymie wahania temperatur dzień/noc, brak atmosfery

Tytan - zimno jak cholera, nie zobaczymy nawet pięknych pierścieni, w sumie to nic nie zobaczymy

Kallisto - tutaj też by nam tyłek przymarzł, szczątkowa atmosfera, kto chciałby mieszkać na księżycu planety wyłapującej wszystkie kamyki US ręka w górę

Gliese 581 c - daleko jak diabli, no chyba, że zbudujemy FTL-a (to nie księżyc Jowisza, jak wydaje się sugerować kontekst)

 

Nie wiem kto chciałby mieszkać w tych koloniach, ale pewnie nawet nie najgorsze wyrzutki z filmów SF. :P

Share this post


Link to post
Share on other sites

Zamieszkać, ale jak? Przecież nawet w najlepszym przypadku 10 miliardów ludzi się tam nie wyprowadzi. Owszem paru ludzi przy odpowiednim i ciągłym wsparciu technicznym mogłoby być może w stanie w przyszłości zamieszkać na takiej planecie (bo przecież trzeba tu wziąć pod uwagę także efekty psychologiczne).

 

Prawda jest taka, że jeśli szukać miejsca do wyprowadzenia się z naszej planety, potrzebna by była druga Ziemia. Teraformowanie planet to także póki co tylko bajka, nie potrafimy nawet zatrzymać globalnego ocieplenia na naszej własnej planecie a co dopiero zmienić warunki klimatyczne odległego ciała niebieskiego.

 

Z przyjemnością obejrzę ten program, ale myśl o życiu na innej planecie to wciąż bardzo odległa przyszłość, a myśl o przeprowadzeniu nawet ułamka populacji Ziemi to kwestia prawdopodobnie nawet tysięcy lat. Póki co ludzie zrobią lepiej jeśli się skupią na swojej własnej planecie i przestaną ją niszczyć w zabójczym tempie. Czy tego chcemy czy nie, ta planeta będzie naszym domem jeszcze przez bardzo bardzo długi czas.

Share this post


Link to post
Share on other sites

Póki co ludzie zrobią lepiej jeśli się skupią na swojej własnej planecie i przestaną ją niszczyć w zabójczym tempie.

 

Kolejny który uważa, że na Ziemi jest za mało ludzi aby robić te dwie rzeczy (badać przestrzeń kosmiczną i Ziemię) naraz?

Share this post


Link to post
Share on other sites

Osobiste badanie przestrzeni kosmicznej przez ludzi nie ma uzasadnienia ekonomicznego, ani technicznego. (nie da się, a jeśli się da to będzie za drogo.) Polatać pewnie każdy by chciał, ale siedzieć 30 lat na Wenus? Bez żartów...

Share this post


Link to post
Share on other sites

Kolejny który uważa, że na Ziemi jest za mało ludzi aby robić te dwie rzeczy (badać przestrzeń kosmiczną i Ziemię) naraz?

 

Ja jestem taką osobą która najpierw kupuje samochód a potem paliwo. 8) Choć pewnie masz rację, po prostu ja widzę mnóstwo ludzi którzy dzięki takim programom zaczynają bujać w obłokach i trochę mnie to martwi na przyszłość - bo ona będzie taką jaką sobie zbudujemy.

Share this post


Link to post
Share on other sites

Pytacie po co mamy kolonizować inne planety ?

po to :

http://www.youtube.com/watch?v=GQi4FG

 

może to trochę zbyt populistyczny blog, ale czytam go często wiec też pewnie ulegam troche histerii :

http://urbas.blog.onet.pl

autor jest przekonany i przytacza wiele "za" , że zbliżamy się do czasu gdy Ziemia będzie znów bombardowana obiektami z kosmosu (pojawiają się teorie, że następuje to cyklicznie.

 

apropos chciałem zarzucić jeszcze tego linka :

http://www.youtube.com/watch?v=mAjA_mxwSKc

i poprosić o ewentualne opinie (nie wiem czy był post na ten temat na kopalni'

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Znamy 79 księżyców Jowisza, a teraz 5 z nich zyskało oficjalne nazwy. Wszyscy słyszeliśmy o Io, Europie, Kallisto i Ganimedesie, które szczególnie interesują naukowców. Jednak własne nazwy ma jeszcze 49 kolejnych księżyców, a 26 oczekuje na ich nadanie. Nazwy dla 5 z nich zostały właśnie oficjalnie zaakceptowane przez Międzynarodową Unię Astronomiczną.
      W lipcu 2018 roku Scott Sheppard i jego koledzy z Carnegie Institution for Science poinformowali, że odkryli 12 nieznanych wcześniej księżyców Jowisza. Po takim odkryciu księżyce zyskały nazwy numeryczne, a odkrywcom przysługuje prawo do nadania im nazw, które jednak muszą zostać zaakceptowane przez Międzynarodową Unię Astronomiczną.
      Dla każdej z planet istnieje lista warunków, jakie muszą spełniać nazwy ich księżyców. W przypadku Jowisza księżyce można nazywać pochodzącymi z mitologii greckiej i rzymskiej imionami kochanek lub potomków Jowisza/Zeusa. Poza tymi podstawowymi istnieje też wiele innych zasad, dotyczących np. maksymalnej długości nazwy czy ostatniej litery w nazwie, która zależy od kierunku orbity księżyca. Sheppard i jego zespół postanowili poprosić o pomoc opinię publiczną i pomiędzy lutym a kwietnie bieżącego roku zbierali propozycje i wybrali z nich te, które następnie przedstawili do akceptacji Międzynarodowej Unii Astronomicznej.
      Zgodnie z tymi zasadami księżyc S/2017 J4 nazywa się obecnie Pandia. To córka Zeusa i bogini Księżyca Seleny. Pandia jest boginią pełni księżyca i siostrą Ersy, która również zyskała właśnie swój księżyc. Imieniem Ersa został bowiem nazwany S/2018 J1. Ersa to bogini rosy porannej.
      Księżyc S/2003 J5 zyskał imię Ejrene. Ta córka Zeusa i Temidy jest boginią pokoju. Filofrozyna, wnuczka Zeusa, personifikacja cnoty orfickiej, otrzymała księżyc znany dotychczas jako S/2003 J15, a jej siostrze Eufeme przypadł w udziale S/2003 J3.
      Małe księżyce Jowisza, takie jak pięć wspomnianych, to najprawdopodobniej pozostałości po większych obiektach, które rozpadły się w wyniku zderzeń. Jeśli uda się odnaleźć je wszystkie, będzie możliwe odtworzenie oryginalnego układu księżyców Jowisza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas formowania się Układu Słonecznego mogło dość często dochodzić do zderzeń tworzących się planet. Podczas jednej z takich kolizji powstał ziemski Księżyc. Jednak to, co spotkało Jowisza jest czymś wyjątkowym.
      Astronomowie z amerykańskiego Rice University i chińskiego Uniwersytetu Sun Jat-sena uważaja, że znaleźli wyjaśnienie dziwnych wyników pomiarów pola grawitacyjnego Jowisza dostarczonych przez sondę Juno.
      Wiodące teorie dotyczące formowania się planet mówią, że Jowisz rozpoczął swoje życie jako gęsta skalista lub lodowa planeta i z czasem zyskał olbrzymią warstwę bardzo gęstej atmosfery złożonej z gazów i pyłów z rodzącego się Układu Słonecznego. Jednak odczyty z Juno wskazują, że jądro Jowisza jest znacznie większe i mniej gęste, niż w takim scenariuszu. To było zastanawiające. Wskazywało, że coś się stało z jądrem. W grę wchodzi wielka kolizja, mówi współautor badań Andrea Isella z Rice University.
      Uczony przyznaje, że bardzo sceptycznie podszedł do hipotezy głównego autora badań, Shanga-Fei Liu, mówiącej o zderzeniu, które rozbiło jądro Jowisza i wymieszało je z rzadszymi częściami planety. To brzmiało bardzo nieprawdopodobnie. Jednak Shang-Fei przekonał mnie, za pomocą wielu obliczeń, że nie jest to nieprawdopodobne, stwierdził Isella.
      Naukowcy przeprowadzili tysiące symulacji komputerowych i stwierdzili, że szybko rosnący Jowisz zaburzył orbity pobliskich protoplanet. Uruchomiono więc kolejne symulacje, by sprawdzić, jakie – w różnych warunkach – było prawdopodobieństwo, że doszło do kolizji. Okazało się, że podczas pierwszych kilku milionów lat swojego istnienia Jowisz mógł z co najmniej 40-procentowym prawdopodobieństwem zderzyć się z rodzącą się planetą i ją wchłonął. Modelowanie komputerowe wykazało, że gdyby Jowisz wciągnął planetę o masę Ziemi, opadałaby ona na jego jądro i rozpadłaby się w gęstej atmosferze. Jądro Jowisza pozostałoby nietknięte. Jedyny scenariusz, wyjaśniający, dlaczego obecnie jądro Jowisza wygląda tak, jak obecnie, zakłada, że protoplaneta, z którą się zderzył, miała masę około 10-krotnie większą od masy Ziemi, mówi Liu.
      Obliczenia wskazują, że tak masywna protoplaneta rozbiła jądro Jowisza. Jeśli nawet do tego wydarzenia doszło 4,5 miliarda lat temu, to potrzeba będzie kolejnych miliardów lat, by jądro Jowisza powróciło do stanu sprzed zderzenia, mówi Isella.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie od dawna marzą o terraformowaniu Marsa. Już w 1971 roku Carl Sagan zaproponował roztopienie lodu biegunie północnym Marsa i wytworzenie w ten sposób atmosfery. To zainspirowało do badań innych naukowców, którzy musieli odpowiedzieć na podstawowe pytanie: czy na Marsie istnieje wystarczająco dużo wody i gazów cieplarnianych, by możliwe było zwiększenie ciśnienia i temperatury na całej planecie. W 2018 roku nadeszło olbrzymie rozczarowanie. Finansowane przez NASA badania wykazały, że wszystkie zasoby Marsa wystarczyłyby do zwiększenia ciśnienia atmosferycznego zaledwie do poziomu 7% ciśnienia na Ziemi. Wydaje się więc, że terraformowanie całego Marsa jest nierealne.
      Teraz naukowcy z Harvard University, Jet Propulsion Laboratory oraz University of Edinburgh wpadli na pomysł, by nie działać na skalę całej planety, a regionalnie.
      W Nature Astronomy opublikowali artykuł, w którym dowodzą, że możliwe jest stworzenie na Marsie warunków sprzyjających życiu. Ich zdaniem należy wykorzystać aerożel krzemionkowy by wywołać efekt cieplarniany podobny do ziemskiego. Modele komputerowe i eksperymenty wykazały, że wystarczy nakryć niektóre obszary planety warstwą aerożelu grubości 2–3 centymetrów, by zablokować szkodliwe promieniowanie ultrafioletowe, na stałe podnieść temperaturę powyżej 0 stopni i przepuścić na tyle widzialnego światła, by rośliny mogły prowadzić fotosyntezę. I to wszystko bez potrzeby używania dodatkowego źródła ciepła.
      Regionalne podejście do uczynienia Marsa nadającym się do zamieszkania jest znacznie łatwiej osiągalne niż globalna modyfikacja jego atmosfery, mówi profesor Robin Wordsworth z Harvarda. W przeciwieństwie do wcześniejszych tego typu pomysłów, tutaj mamy projekt, który można stopniowo testować i rozwijać za pomocą technologii i materiałów, które już teraz posiadamy, dodaje.
      Mars to, poza Ziemią, najbardziej przyjazna życiu planeta Układu Słonecznego. Jednak pozostaje nieprzyjazny dla wielu form życia. System tworzenia niewielkich zamieszkałych wysp pozwoliłby na przekształcanie Marsa w kontrolowalny, skalowalny sposób, wyjaśnia Laura Kerber z Jet Propulsion Laboratory.
      Naukowcy przyznają, że ich pomysł opiera się na zjawisku, które już zaobserwowano na Marsie. W przeciwieństwie do czap lodowych na ziemskich biegunach pokrywy lodowe występujące na Marsie to połączenie wody i zamarzniętego CO2. Dwutlenek węgla, jak wiemy, przepuszcza promienie słoneczne i zatrzymuje ciepło. Latem zjawisko to powoduje, że pod pokrywą lodową marsjańskich biegunów tworzą się kieszenie, w których występuje efekt cieplarniany.
      Zaczęliśmy myśleć o tym efekcie cieplarnianym wywoływanym przez zamarznięty dwutlenek węgla i o tym, jak można by go wykorzystać do stworzenia warunków dla istnienia życia na Marsie. Zastanawialiśmy się, czy istnieje materiał, który charakteryzuje się minimalnym przewodnictwem cieplnym, ale przepuszcza dużo światła, wspomina Wordsworth. Wybór naukowców padł na krzemionkowy aerożel, jeden z najdoskonalszych izolatorów stworzonych przez człowieka.
      Aerożele krzemionkowe są w 97% porowate, dzięki czemu światło łatwo się przez nie przedostaje, jednak nanowarstwy ditlenku krzemu zatrzymują promieniowanie podczerwone, znacząco utrudniając przewodnictwo cieplne.
      Aerożel krzemionkowy to obiecujący materiał, gdyż działa pasywnie. Nie wymaga dostarczania energii, nie posiada ruchomych części, które trzeba by konserwować i naprawiać, przez długi czas utrzymuje ciepło, przypomina Kerber.
      Modele komputerowe i eksperymenty wykazały, że jeśli takim aerożelem pokryjemy jakiś obszar znajdujący się na marsjańskich średnich szerokościach geograficznych, to temperatury na tym obszarze wzrosną niemal do poziomu ziemskiego. Wystarczy pokryć odpowiednio duży obszar, a nie będzie potrzeba żadnej innej technologii czy zjawiska fizycznego. Po prostu wystarczy warstwa tego materiału, by utrzymać wodę w stanie ciekłym, wyjaśnia Wordsworth.
      Krzemionkowy aerożel mógłby więc zostać wykorzystany do budowy pomieszczeń mieszkalnych, a nawet samodzielnej biosfery na Marsie.
      Naukowcy mają teraz zamiar przetestować swoje koncepcje na tych obszarach Ziemi, które przypominają Marsa. Mają tutaj do wyboru suche doliny Antarktyki i Chile.
      Profesor Wordsorth przypomina, że gdy zaczniemy poważną dyskusję na temat uczynienia Marsa nadającym się do zamieszkania, będziemy musieli rozważyć też kwestie filozoficzne czy etyczne, dotyczące np. ochrony planety. Jeśli mamy zamiar zaszczepić życie na Marsie, to musimy odpowiedzieć sobie na pytanie, czy już tam nie ma życia. A jeśli jest, to jak to pogodzić. Nie unikniemy takich pytań, jeśli chcemy, by ludzie mieszkali na Marsie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wysłanie człowieka na Marsa wymaga rozwiązania całego szeregu problemów technicznych, a jednym z nich jest samo lądowanie na Czerwonej Planecie. Dotychczas najcięższym obiektem, jaki udało się na niej posadowić jest ważący 1 tonę łazik Curiosity. Tymczasem wysłanie bardziej złożonej misji automatycznej czy w końcu ludzi, będzie wymagało przeprowadzenia miękkiego lądowania obiektu o masie od 5 do 20 ton.
      Christopher G. Lorenz i Zachary R. Putnam są autorami zamówionego przez NASA studium pt. „Entry Trajectory Options for High Ballistic Coefficient Vehicles at Mars”, które opublikowano w Journal of Spacecraft and Rockets.
      Zwykle lądujący obiekt wchodzi w atmosferę Marsa z prędkością około 30 Mach, szybko zwalnia, rozwija spadochrony, a na końcu ląduje za pomocą silników lub poduszek powietrznych. Niestety spadochrony nie skalują się dobrze wraz z rosnącą masą obiektu. Nowy pomysł polega na rezygnacji ze spadochronu i wykorzystaniu większych silników rakietowych, mówi profesor Zach Putnam z University of Illinois at Urbana-Champaign.
      Zaproponowana metoda zakłada, że gdy lądujący obiekt spowolni do prędkości Mach 3 zostaną uruchomione silniki hamujące o ciągu wstecznym, które na tyle go spowolnią, iż będzie mógł bezpiecznie wylądować. Problem jednak w tym, że manewr ten będzie wymagał dużej ilości paliwa. Paliwo to zwiększa masę misji, co z kolei czyni ją znacznie droższą, nie mówiąc już o tym, że to dodatkowe paliwo trzeba wynieść z powierzchni Ziemi, zużywając przy tym jeszcze więcej paliwa. Obecnie nie istnieje system rakietowy zdolny do wyniesienia takiej masy. Ponadto, co równie ważne, każdy kilogram paliwa oznacza kilogram mniej innego ładunku: ludzi, instrumentów naukowych, zaopatrzenia itp. itd.
      Gdy pojazd porusza się z prędkością ponaddźwiękową to jeszcze przed uruchomieniem silników tworzy się siła nośna, którą możemy wykorzystać do sterowania. Jeśli przesuniemy środek ciężkości pojazdu tak, by był on bardziej obciążony z jednej strony, poleci on pod innym kątem. Mamy pewną możliwość kontroli podczas wejścia w atmosferę, obniżania lotu i lądowania. Przy prędkości ponaddźwiękowej możemy użyć siły nośnej do sterowania. Po uruchomieniu silników możemy ich użyć do bardzo precyzyjnego lądowania. Mamy więc do wyboru, albo spalić więcej paliwa, by wylądować z jak największą precyzją, albo nie przejmować się precyzją, oszczędzić paliwo i wysłać tam jak najcięższy pojazd, albo też znaleźć złoty środek pomiędzy tymi rozwiązaniami, wyjaśnia Putnam.
      Zatem główne pytanie brzmi, jeśli wiemy, że będziemy uruchamiać silniki hamujące przy, powiedzmy, Mach 3, to jak powinniśmy sterować pojazdem by zużyć jak najmniej paliwa a zmaksymalizować masę ładunku. Wysokość, na jakiej uruchomimy silniki hamujące jest niezwykle ważna w celu maksymalizacji masy ładunku, jaką możemy wysłać. Ale również ważny jest kąt wektora prędkości pojazdu względem horyzontu, innymi słowy, jak ostro pojazd będzie nurkował, dodaje uczony.
      Putnam i Lorenz przeprowadzili wyliczenia, które dały odpowiedź na pytanie o sposób najlepszego użycia siły nośnej i optymalne techniki kontroli przy maksymalnej masie pojazdu w zależności od konfiguracji pojazdu, warunków atmosferycznych oraz szerokości geograficznej na jakiej będzie on lądował.
      Okazuje się, że najlepszym rozwiązaniem jest wejście w atmosferę tak, by wektor siły nośnej był skierowany w dół. Potem, w odpowiednim momencie, opierając się na czasie lub prędkości, należy podnieść wektor siły nośnej tak, by wyciągnąć pojazd z lotu nurkowego i żeby leciał on równolegle do planety na niskiej wysokości. Dzięki temu pojazd spędzi więcej czasu tam, gdzie atmosfera jest gęstsza, więc dodatkowo wyhamuje, dzięki czemu zaoszczędzimy paliwo potrzebne silnikom do lądowania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Misja InSight wylądowała na Marsie. Po siedmiomiesięcznej podróży i przebyciu 458 milionów kilometrów sonda dotknęła powierzchni Czerwonej Planety w pobliżu równika, w zachodniej części pola lawowego Elysium Planitia.
      Dzisiaj, po raz ósmy w historii człowieka, przeprowadziliśmy udane lądowanie na Marsie. InSight będzie badał wnętrze Marsa i dostarczy nam wartościowych informacji, które wykorzystamy podczas wysłania człowieka na Księżyc i dalej na Marsa. Osiągnięcie to jest przykładem pomysłowości Amerykanów i naszych międzynarodowych partnerów, powiedział administrator NASA Jim Bridenstine.
      Sygnał o udanym lądowaniu został przesłany do Jet Propulsion Laboratory za pośrednictwem dwóch eksperymentalnych pojazdów Mars Cube One (MarCO). To urządzenia typu CubeSat, które zostały wystrzelone za pomocą tej samej rakiety do InSight i podążały za nią na Marsa. To jednocześnie pierwsze CubeSaty wysłane w głębsze regiony przestrzeni kosmicznej.
      Kilka godzin po lądowaniu InSight przysłał wiadomość, że rozłożył panele słoneczne i ładuje swoje baterie. Dane te trafiły na Ziemię za pośrednictwem orbitera Mars Odyssey, który od lat okrąża Czerwoną Planetę.
      Zespół misji InSight może nieco odetchnąć po informacji, że panele słoneczne zostały rozłożone. To był długi dzień. Ale jutro rozpoczyna się nowy ekscytujący rozdział w historii misji: początek operacji na powierzchni i etap rozkładania instrumentów naukowych.
      Każdy z paneli InSight ma 2,2 metra szerokości. Podczas bezchmurnego dnia dostarczą urządzeniu 600–700 watów. Nawet jeśli panele zostaną pokryte kurzem, a na Marsie będzie się to często zdarzało, powinny one dostarczać co najmniej 200 watów.
      Miną 2–3 miesiące, zanim InSight rozłoży i przetestuje wszystkie swoje instrumenty naukowe i zacznie przesyłać z nich dane.
      Tymczasem CubeSaty MarCO wypełniły swoją misję i dowiodły, że tego typu urządzenia mogą pracować nie tylko na orbicie Ziemi. To niezwykle ważna wiadomość dla przyszłych misji eksplorujących dalsze obszary Układu Słonecznego. Oznacza to bowiem, że stosunkowo niewielkim kosztem do misji można dodać satelity, które zapewnią łączność z Ziemią. Wokół Marsa krążą ją inne satelity, więc łączność z misją InSight nie była uzależniona od prawidłowego działania MarCO. Jednak ich zakończony z powodzeniem test wykazał, że w przyszłości możliwe będzie zarówno wykorzystanie ich w misjach większych urządzeń, które nie mogą liczyć na pomoc satelitów krążących wokół innych ciał niebieskich, jak i na szybsze i tańsze przygotowanie misji składającej się z samych MarCo.

      « powrót do artykułu
×
×
  • Create New...