Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Związek wytwarzany przez bakterie glebowe Streptomyces może uszkadzać neurony produkujące dopaminę. Badacze z University of Alabama uważają, że ich działaniem można by wytłumaczyć przypadki choroby Parkinsona, w których nie da się wyróżnić czynnika genetycznego (PLoS ONE).

Amerykanie sądzą, że w grę wchodzi związek nieznany jeszcze nauce, będący wtórnym metabolitem bakteryjnym. Eksperymenty laboratoryjne prowadzono na modelu zwierzęcym, a konkretnie z udziałem nicieni z gatunku Caenorhabditis elegans. Gdy wystawiano je na oddziaływanie wybranych szczepów bakteryjnych, zaczynały umierać ich neurony dopaminoergiczne. Generalnie nicienie miały się dobrze, lecz dochodziło do gwałtownego wymierania neuronów wydzielających jako neuroprzekaźnik dopaminę – tłumaczy dr Guy Caldwell z University of Alabama.

Dalsze testy tajemniczego związku, prowadzone przy pomocy naukowców z Birmingham, wykazały, że na ludzkie komórki nerwowe działa on tak samo, jak na neurony C. elegans. Nicienie stanowią doskonały model wielu chorób, ponieważ są prostymi organizmami i łatwo je hodować, a jednocześnie występują u nich podstawowe neuroprzekaźniki, np. dopamina.

Wyniki badań są na razie wstępne. Nie dysponując oczyszczonym związkiem, nie wiemy, czy jego ilość, z jaką ludzie stykają się ciągu całego życia, wystarczy do wywołania problemów [zdrowotnych] – zaznacza dr Julie Olson, współautorka studium.

Biolodzy sądzą, że badana substancja bakteryjna zaburza działanie układu ATP-ubikwityna-proteasomy (ang. ubiquitin proteasome system, UPS). Mamy dowody komórkowe, że ten mechanizm może być zaburzony. W zwykłych okolicznościach pozbywa się on białek o nieprawidłowej budowie lub działaniu; w ramach wcześniejszych badań połączono go z rzadkimi postaciami genetycznymi parkinsonizmu.

Pozostawione same sobie nieprawidłowe cząsteczki białek łączą się z innymi, tworząc ostatecznie rozbudowane kompleksy. Wiąże się to z uszkodzeniem neuronów i ich obumieraniem.

Podczas eksperymentów biolodzy posłużyli się bakteriami glebowymi S. venezuelae. Wytwarzany przez nie metabolit zaburzał działanie UPS i powodował postępującą degenerację wszystkich uzwględnionych rodzajów neuronów, lecz najbardziej podatne na uszkodzenia wydawały się komórki nerwowe istoty czarnej (łac. substantia nigra).

Analizy wykazały, że cząsteczki badanego związku są stabilne, lipofilne (wykazują powinowactwo do tłuszczów) i niewielkie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Nad odpowiednimi sposobami przyjaznego klimatowi gospodarowania glebą, tak aby wzbogacić ją w huminy – materię organiczną odporną na rozkład mikrobiologiczny – pracuje międzynarodowy zespół naukowy z udziałem Polaków.
      Gleba jest globalnie największym magazynem węgla, który jest wiązany w glebowej materii organicznej. Niestety, trwałość jej na ogół nie jest wysoka, gdyż z czasem przy udziale mikroorganizmów ulega ona mineralizacji, a uwolniony węgiel jest emitowany do atmosfery. Zmiany klimatyczne związane z emisją dwutlenku węgla skłaniają badaczy do szukania sposobów na zwiększenie w glebie zawartości węgla, który jest wiązany w bardziej trwałych formach.Rośliny pobierają dwutlenek węgla z powietrza i wbudowują węgiel w swoje tkanki. Po obumarciu rośliny – w wyniku skomplikowanych procesów biochemicznych – tkanki te przekształcają się w glebową materię organiczną. W ten sposób węgiel jest usuwany z atmosfery i magazynowany w roślinach i glebie.
      Międzynarodowe badania polowe
      Naukowcy wybiorą te metody agrotechniczne, które mogą wpłynąć na optymalną zawartość węgla organicznego w glebie. Określą stabilność glebowej materii organicznej w zależności od warunków gospodarowania w różnych warunkach klimatycznych Europu i USA.
      Mamy dostęp do unikatowych wieloletnich badań polowych prowadzonych przez partnerów na różnych glebach w odmiennych warunkach klimatycznych – mówi kierownik projektu prof. Jerzy Weber z Instytutu Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu.

      Liderem konsorcjum „SOMPACS – soil management effects on Soil Organic Matter Properties And Carbon Sequestration” jest Uniwersytet Przyrodniczy we Wrocławiu, pozostałe polskie ośrodki zaangażowane w projekt to Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Instytut Agrofizyki PAN w Lublinie, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Uniwersytet Wrocławski oraz Grupa Producentów Rolnych TERRA z Prusic koło Złotoryi.
      Huminy odporne na rozkład
      Badacze sprawdzą, jak różne sposoby użytkowania i uprawiania gleby wpływają na tworzenie się w glebie frakcji najbardziej odpornej na procesy rozkładu. Ta frakcja to tzw. huminy.
      Jak wyjaśnia prof. Jerzy Weber, substancje humusowe zawarte w glebie bada się rozpuszczając je w alkaliach, dzięki czemu mogą być wydzielane jej poszczególne frakcje. Na tej zasadzie uzyskano preparat immunologiczny prof. Tołpy, który na rynku farmaceutycznym zrobił furorę w latach 80. XX wieku.
      Huminy są trudne do badania, bo nie rozpuszczają się w alkaliach. Frakcja ta będzie we Wrocławiu izolowana poprzez usuwanie wszystkich pozostałych składników materiału glebowego metodą opublikowaną przez nas w 2021 roku. Na uniwersytecie Limerick w Irlandii będzie wykorzystywana do tego metoda ekstrakcji, a frakcje uzyskane obu metodami będą analizowane przez wszystkich uczestników międzynarodowego konsorcjum. Będziemy dążyć do określenia w jaki sposób różne użytkowanie gleby wpływa na zawartość i właściwości humin – tłumaczy prof. Weber.
      Przyjazne klimatowi sposoby gospodarowania glebą
      Badacze pobiorą próbki z ośmiu wieloletnich doświadczeń polowych z różnymi systemami gospodarowania glebą na Litwie, we Włoszech, w Irlandii i w Polsce (tu stosowanymi od wieku), a także z najdłuższego na świecie brytyjskiego eksperymentu Broadbalk prowadzonego nieprzerwanie przez od 178 lat.
      Wśród tych systemów jest uprawa konwencjonalna lub bezorkowa, nawożenie mineralne lub organiczne, uprawa z międzyplonami lub bez nich, grunty orne lub użytki zielone oraz gleby uprawiane albo nieuprawiane.
      Eksperymenty będą również prowadzone na polach produkcyjnych, gdzie oprócz stosowanych metod uprawy zastosowane zostaną dodatki stymulujące wzrost korzeni (komercyjne produkty humusowe, biowęgiel, poferment z biogazowni). Wpływ tych dodatków na zawartość i właściwości glebowej materii organicznej zostanie zbadany w doświadczeniach polowych, a także w badaniach inkubacyjnych nad jej rozkładem mikrobiologicznym. Równolegle do pobierania próbek gleby, w doświadczeniach polowych będzie określone plonowanie, a także w warunkach polowych będzie mierzona emisja CO2 z gleby.
      Podstawowe właściwości gleby zostaną uzupełnione analizą aktywności enzymatycznej, badaniem retencji wody w glebie, hydrofobowości gleby i stabilności jej struktury, składu mineralogicznego koloidów glebowych, a także specjalistycznymi badaniami właściwości mikrobiologicznych, w tym genetyki mikrobiomu i mykobiomu – wyjaśnia prof. Weber.
      Najwyższa nagroda w europejskim konkursie
      Projekt międzynarodowego konsorcjum, którego liderem jest Uniwersytet Przyrodniczy we Wrocławiu, został najwyżej oceniony w pierwszym zewnętrznym konkursie The European Joint Programme EJP SOIL Towards climate-smart sustainable management of agricultural soils.
      Celem konkursu jest przyjazne dla klimatu zrównoważone gospodarowanie glebami rolniczymi, co daje możliwość połączenia kwestii zmian klimatycznych z szeroko rozumianym rolnictwem. Z około 80 zgłoszonych projektów do finansowania wybrano 11. Najwyżej oceniono właśnie „SOMPACS”.
      Badania potrwają do 2025. Poza polskimi instytucjami realizować je będzie: University of Limerick z Irlandii, University of Rostock z Niemiec, University of Wyoming w Stanach Zjednoczonych, University of Naples we Włoszech, Vytautas Magnis University i Agricultural Academy w Kownie na Litwie, Rothamsted Research w Harpenden w Wielkiej Brytanii. W Polsce badania będą finansowane przez Narodowe Centrum Badań i Rozwoju, które łącznie na ten cel przeznaczyło 200 tysięcy euro.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      U ludzi, którzy przez długi czas zmagają się przeciwnościami psychospołecznymi, są np. ofiarami przemocy, upośledzeniu ulega zdolność produkowania ilości dopaminy koniecznych do poradzenia sobie z sytuacjami stresowymi.
      Wyniki, które ukazały się w piśmie eLife, wyjaśniają, czemu długotrwała ekspozycja na traumę psychologiczną i przemoc może stanowić czynnik ryzyka choroby psychicznej czy uzależnień.
      Wiedzieliśmy, że chroniczne przeciwności psychospołeczne mogą skutkować podatnością na choroby psychiczne, np. depresję czy schizofrenię. Dotąd brakowało nam jednak precyzyjnego mechanistycznego wyjaśnienia, w jaki sposób dochodzi do zwiększenia ryzyka - opowiada dr Michael Bloomfield z Uniwersyteckiego College'u Londyńskiego.
      By się tego dowiedzieć, naukowcy zebrali grupę 34 ochotników. Połowę cechowała duża kumulatywna ekspozycja na przeciwności psychospołeczne. Resztę próby stanowiła dopasowana pod względem wieku i płci grupa kontrolna (z niską kumulatywną ekspozycją).
      Wszyscy przeszli procedurę wywołania ostrego stresu społecznego za pomocą Montréal Imaging Stress Task (MIST). Dwie godziny później badanym wstrzyknięto znacznik, który pozwalał prześledzić produkcję dopaminy w mózgu za pomocą pozytonowej tomografii emisyjnej (PET).
      Okazało się, że u osób z grupy kontrolnej produkcja dopaminy korelowała (była proporcjonalna) ze stopniem postrzeganego zagrożenia i reakcją fizjologiczną na ostry stres. U ochotników z dużą ekspozycją kumulatywną na przeciwności psychospołeczne percepcja zagrożenia była zaś wyolbrzymiona, a synteza dopaminy w prążkowiu upośledzona. Stłumione były również inne fizjologiczne reakcje na stres; ciśnienie i poziomy kortyzolu nie rosły np. w takim stopniu jak w grupie kontrolnej.
      To badanie nie stanowi dowodu, że przewlekły stres psychospołeczny wywołuje chorobę psychiczną lub nadużywanie substancji psychoaktywnych na późniejszych etapach życia. Wskazaliśmy jednak prawdopodobny mechanizm, który sugeruje, że chroniczny stres może podwyższać ryzyko choroby psychicznej, zmieniając mózgowy układ dopaminergiczny.
      By lepiej zrozumieć, jak wywołane przeciwnościami psychospołecznymi zmiany w układzie dopaminergicznym mogą zwiększać podatność na choroby psychiczne i uzależnienie, potrzebne są dalsze badania - podsumowuje prof. Oliver Howes z King's College London.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...