Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Nissan pokazał robota-zabawkę, który może przyczynić się do zmniejszenia liczby wypadków samochodowych. Robot Eporo może poruszać się w grupie 7 podobnych urządzeń i jest w stanie unikać zderzenia z innymi robotami.

Każdy z nich używa laserów do pomiaru odległości pomiędzy przeszkodami, a informacje są na bieżąco wymieniane pomiędzy urządzeniami. Dzięki temu, gdy jedno z urządzeń gwałtownie zmieni kierunek, inne poruszają się tak, by uniknąć zderzenia z nim.

Toshiyuki Andou z Nissana zdradza, że jego zespół wzorował się na ławicach ryb. Każde ze zwierząt ma tam zapewnioną pewną swobodę ruchu i poziom bezpieczeństwa, który gwarantuje, że przy gwałtownych zmianach kierunku poruszania się, nie wpadnie na inną rybę z ławicy.

W przyszłości rozwiązania zastosowane w Eporo mogą  zostać użyte w produkowanych seryjnie samochodach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podobną prawidłowość zaobserwowałem kiedyś u much latających pod żyrandolem.

Latają dość powiedzmy chaotycznie a raczej w sposób nie powiązany z innymi osobnikami. Po jakiś tam swoich powtarzalnych w miarę torach. Do puki się nie zbliżą dwie muchy do siebie potem latają w dość przypadkowych kierunkach zgodnie z jedną zasadą zawsze w tej samej odległości I tak aż któraś się odłączy, czasem dołączy się jeszcze trzecia. 

 

Podobna prawidłowość występuje w stadzie wron, bardzo ciekawie to wygląda. Tylko ze one starają się cały czas trzymać odległość,

 

Mam nadzieje ze panowie z nissana za bardzo nie wzorowali się na ławicy ryb bo ono m jeden minus w razie zagrożenia ta zasada przestaje działać i szyk jest łamany.

 

Kiedyś kilka lat temu chyba w PC World było na cd kilka programów do symulowania zachowań stadnych. W tym miedzy innymi stada ptaków.

 

Ale i tak z zabaw z tej serii moim faworytem jest "gra w życie" Johna Conwaya 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
odobną prawidłowość zaobserwowałem kiedyś u much latających pod żyrandolem.

Latają dość powiedzmy chaotycznie a raczej w sposób nie powiązany z innymi osobnikami. Po jakiś tam swoich powtarzalnych w miarę torach. Do puki się nie zbliżą dwie muchy do siebie potem latają w dość przypadkowych kierunkach zgodnie z jedną zasadą zawsze w tej samej odległości I tak aż któraś się odłączy, czasem dołączy się jeszcze trzecia.

 

Kiedyś, kiedy leżałem w szpitalu też to zauważyłem  (:

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

I to bedzie przyszlosc. Absolutnym nieporozumieniem i jedna z najwiekszych pomylek ludzkosci bylo powierzenie kierowania pojazdami ludziom. Znakomita wiekszosc ludzi nie nadaje sie nawet do prowadzenia roweru, czy taczki; nie wspominajac juz o pojazdach, ktorymi moga zabic nie tyko siebie, ale - co najwazniejsze - innych. Prawo jazdy nic nie znaczy. Zbyt latwo dzis o nie, w szczegolnosci od momentu, w ktorym zaczeto traktowac proces jego uzyskania jako swoista "przepustke do doroslosci", rytual pelnoletnosci i bezrefleksyjny wymog pracodawcow. Niestety zwykle nie idzie to w parze z dojrzaloscia, swiadomoscia ogromnej odpowiedzialnosci, ktora spoczywa na kazdym kierowcy; a takze ogolna refleksyjnoscia kierowcow.

Paradoksalnie - trudniej jest uzyskac licencje na sterowanie pojazdami powietrznymi, choc szkody ludzkie, jakie mozna z ich uzyciem wyrzadzic sa nieporownywalnie mniejsze od tych, ktore mozna zaobserwowac w przypadku udzialu tradycyjnych samochodow.

 

"Dziwny jest ten swiat ..."

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
choc szkody ludzkie, jakie mozna z ich uzyciem wyrzadzic sa nieporownywalnie mniejsze

 

Może właśnie dlatego są mniejsze, bo jest lepsze szkolenie/selekcja pilotów? Kierowanie wymaga pewnej koncentracji oraz nawyków, które można łatwo zdobyć np. na skuterze albo motocyklu (tzw. oczy dookoła głowy). Potrzebne jest też odpowiednie reagowanie na różne dziwaczne sytuacje (tzw. instynkt). Przy odrobinie szczęścia można z tym dociągnąć do emerytury.

 

Swoją drogą, jestem ciekaw jaką decyzję podjąłby automat, gdyby miał do wyboru: huknąć w inny samochód, czy go ominąć, zgarniając z chodnika wycieczkę przedszkolaków... Chociaż nie, właściwie to nie chcę tego wiedzieć.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

a jak przy muchach mamy oftopa to jestem ciekaw dlaczego one latają pod żyrandolem ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Na discovery widziałem serię programów przedstawiających zawody takich samosterownych samochodo-robotów, projektu naukowców z czołowych uczelni i organizacji. I szczerze mówiąc, jeszcze minie sporo czasu zanim taki system będzie wydajny. Fakt, dużym sukcesem jest że te samochody same przejechały trasę, zaparkowały itd. Ale po pierwsze robiły to z prędkością rzędu 10km/h, a przy prędkościach używanych na drogach obecnie, ich czujniki i systemy komputerowe musiałyby wykonywać tysiąckrotnie więcej obliczeń w tym samym czasie. A po drugie, wielu z tych robotów zdarzało się dość często 'zawieszać' ze względu na jakiś konflikt algorytmów sterujących..

 

Niestety długo maszyna nie dogoni człowieka. Choć przyznaję - wielu kierowcom się powinno karki poprzetrącać za to jak jeżdżą. Wystarczyło by, żeby ludzie dostosowali się do przepisów albo chociaż przestrzegali elementarnych zasad zdrowego rozsądku, a tego typu zaawansowane systemy autonomicznie sterujące samochodami w ogóle nie byłyby potrzebne..

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@Przemek Kobel - dylemat wyboru wlasciwej sciezki jest w przypadku zagadnien automatyki dylematem pozornym. Maszyna zawsze zareaguje lepiej od czlowieka, poniewaz nie jest podatna na stres, emocje ogolem. Maszyna nie wcisnie sobie 200km/h w terenie zabudowanym i nie bedzie krecic "szpanu" przed przechodniami/innymi kierowcami. W przypadku konkretnej przeszkody po prostu zahamuje, nie bedzie tez podatna na srodki odurzajace. Tyle w temacie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To ja może podam przykład. Mokro, prawy łuk, dwa pasy, na obu wszyscy jadą w sznurku nieco ponad 60 na godzinę. Pod koniec łuku okazuje się, że na lewym pasie samochody stoją, bo ktoś skręca w lewo. Nie było tego widać, bo zasłaniały dostawczaki na prawym pasie. Automat ma 20 metrów na decyzję. Co będzie dalej?

 

1. Ostre hamowanie. Na mokrym wynosi cię na lewą stronę -> czołówka.

 

2. Łagodniejsze hamowanie. Samochód utrzymuje się na pasie, ale wjeżdża w tył samochodu poprzedzającego.

 

A może tak:

 

Hamulec, odczekać, puścić, prawo, lewo (przeskok o pół pasa w prawo), lewo, prawo (powrót na lewy pas).

 

Aha, to nie jest przykład wymyślony.

 

 

edit: między "lewo" a "prawo" musi być też przez chwilę "prosto", bo inaczej ucieknie tył.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jest trzecie wyjście: w górę  i czwarte: jechać pociągiem.

 

 

 

 

Tak, tak ... wiem że to mało popularne wyjścia. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Misja Psyche jeszcze nie dotarła do celu, a już zapisała się w historii podboju kosmosu. Głównym jej celem jest zbadanie największej w Układzie Słonecznym asteroidy Psyche. Przy okazji NASA postanowiła przetestować technologię, z którą eksperci nie potrafili poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera. Agencja poinformowała właśnie, że z Psyche na Ziemię trafił 15-sekudowy materiał wideo przesłany z odległości 31 milionów kilometrów z maksymalną prędkością 267 Mbps. To niemal 2-krotnie szybciej niż średnia prędkość szerokopasmowego internetu w Polsce.
      To, czego właśnie dokonała NASA jest nie zwykle ważnym osiągnięciem. Pozwoli bowiem na znacznie sprawniejsze zbieranie danych z instrumentów pracujących w przestrzeni kosmicznej i zapewni dobrą komunikację z misjami załogowymi odbywającymi się poza orbitą Ziemi.
      Sygnał z Psyche potrzebował około 101 sekund, by dotrzeć do Ziemi. Dane, przesyłane przez laser pracujący w bliskiej podczerwieni trafiły najpierw do Hale Teelscope w Palomar Observatory w Kalifornii. Następnie przesłano je do Jet Propulsion Laboratory w Południowej Kalifornii, gdzie były odtwarzane w czasie rzeczywistym podczas przesyłania. Jak zauważył Ryan Rogalin, odpowiedzialny za elektronikę odbiornika w JPL, wideo odebrane w Palomar zostało przesłane przez internet do JPL, a transfer danych odbywał się wolniej, niż przesyłanie danych z kosmosu. Podziwiając tempo transferu danych nie możemy zapomnieć też o niezwykłej precyzji, osiągniętej przez NASA. Znajdujący się na Psyche laser trafił z odległości 31 milionów kilometrów w 5-metrowe zwierciadło teleskopu. Sam teleskop to również cud techniki. Jego budowę ukończono w 1948 roku i przez 45 lat był najdoskonalszym teleskopem optycznym, a jego zwierciadło główne jest drugim największym zwierciadłem odlanym w całości.
      Po co jednak prowadzić próby z komunikacją laserową, skoro od dziesięcioleci w przestrzeni kosmicznej z powodzeniem przesyła się dane za pomocą fal radiowych? Otóż fale radiowe mają częstotliwość od 3 Hz do 3 Thz. Tymczasem częstotliwość pracy lasera podczerwonego sięga 300 THz. Zatem transmisja z jego użyciem może być nawet 100-krotnie szybsza. Ma to olbrzymie znaczenie. Chcemy bowiem wysyłać w przestrzeń kosmiczną coraz więcej coraz doskonalszych narzędzi. Dość wspomnieć, że Teleskop Webba, który zbiera do 57 GB danych na dobę, wysyła je na Ziemię z prędkością dochodzącą do 28 Mb/s. Zatem jego systemy łączności działają 10-krotnie wolniej, niż testowa komunikacja laserowa.
      Zainstalowany na Psyche Deep Space Optical Communication (DSOC) uruchomiono po raz pierwszy 14 listopada. Przez kolejne dni system sprawdzano i dostrajano, osiągając coraz szybszy transfer danych i coraz większą precyzję ustanawiania łącza z teleskopem. W tym testowym okresie przesłano na Ziemię łącznie 1,3 terabita danych. Dla porównania, misja Magellan, która w latach 1990–1994 badała Wenus, przesłała w tym czasie 1,2 Tb.
      Misja Psyche korzysta ze standardowego systemu komunikacji radiowej. DSOC jest systemem testowym, a jego funkcjonowanie nie będzie wpływało na powodzenie całej misji.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ruszasz na urlop? Wiesz, jak przygotować samochód do podróży? Przed wyjazdem w daleką trasę powinieneś dobrze sprawdzić stan techniczny pojazdu, a także zabrać ze sobą odpowiednie akcesoria. Niech nic nie zaskoczy Cię podczas wyjazdu, a na pewno wrócisz wypoczęty!
      Jak przygotować samochód na wakacyjną podróż?
      Oczywiście każdy samochód powinien być regularnie sprawdzany, nie tylko przed wyjazdami na wakacje. Jednak jak wiemy w praktyce, bywa z tym różnie. Pamiętaj, że kiedy wybierasz się daleko od domu, koniecznie powinieneś przygotować auto do trasy. Zwłaszcza jeśli zabierasz ze sobą rodzinę. Zapewnienie bezpieczeństwa podróżującym bliskim to absolutny priorytet każdego kierowcy. Przygotowanie samochodu nie polega wyłącznie na sprawdzeniu jego stanu technicznego, ale także zabraniu odpowiednich akcesoriów lub narzędzi. Powinieneś także upewnić się, jaki zakres ubezpieczenia obejmuje Twoje auto i podróżujące z Tobą osoby.
      Sprawdź pobliski warsztat na trasie Twojej podróży:
      https://motointegrator.com/pl/pl/warsztaty
      Sprawdzenie stanu pojazdu i krótki serwis przed wyjazdem
      Podróże zazwyczaj planowane są z odpowiednim wyprzedzeniem. Upewnij się więc wcześniej w jakim stanie są najważniejsze podzespoły Twojego pojazdu. Sprawdź poziom zużycia klocków hamulcowych, a także stan bieżnika opon. Jeśli cokolwiek budzi Twoje wątpliwości, udaj się do mechanika. Ważne jest także sprawdzenie poziomu płynu chłodniczego i oleju. Jeśli poziom jest minimalny, konieczne będzie ich uzupełnienie. W bagażniku warto wozić także zapasową butelkę oleju i płynu chłodniczego. Nigdy nie wiadomo, co spotka Cię po drodze. Dzięki przygotowaniu zapasu będziesz mógł uzupełnić stan płynów, aby bezpiecznie dojechać do warsztatu samochodowego w razie wycieków. Przed wyjazdem warto także udać się na szybki przegląd do mechanika. Podda weryfikacji także stan zawieszania oraz stan pasków osprzętu, które również lubią niezapowiedziane odmówić posłuszeństwa. Przy okazji warto także odgrzybić i „nabić” klimatyzację. W końcu czeka Cię kilkugodzinna podróż, a lato bywa upalne.
      Co zabrać ze sobą w wakacyjną podróż?
      Przede wszystkim, sprawdź koło zapasowe. Powinieneś mieć także ze sobą pasujący klucz i lewarek, za pomocą którego możliwe będzie podniesienie auta. Wiele samochodów nie przewiduje już miejsca na koło zapasowe. Wtedy konieczne jest wożenie tak zwanego „zestawu naprawczego” składa się on z pianki wypełniającej ubytki w oponie oraz kompresora, z pomocą którego możliwe jest napompowanie koła. W bagażniku pojazdu koniecznie powinien znaleźć się także trójkąt ostrzegawczy oraz ważna gaśnica samochodowa. Obowiązkowym wyposażeniem, choć często lekceważonym, jest kamizelka odblaskowa, którą powinieneś założyć podczas nieoczekiwanych postojów. W bagażniku powinno się również znaleźć miejsce na apteczkę, mimo, że nie jest ona wymagana w świetle przepisów.
      W podróż zabierz także podstawową skrzynkę z narzędziami. Powinny się w niej znaleźć: taśma izolacyjna, opaski zaciskowe, zestaw wkrętaków i kluczy płasko oczkowych i zapasowe żarówki. Choć w nowoczesnych autach niewiele można naprawić samodzielnie, warto mieć takie podstawowe narzędzia. Z ich pomocą możesz naprawić np. bagażnik dachowy. Poza tym przygotuj akcesoria ułatwiające jazdę. Powinien to być uchwyt do telefonu, a także ładowarka samochodowa. Jeśli nie korzystasz z map Google, powinieneś zabrać ze sobą również nawigację GPS. Mogą przydać się również okulary przeciwsłoneczne z polaryzacją, jeśli masz spędzić za kółkiem wiele godzin.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
      Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
      Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
      Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
      Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
      Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Łazik Perseverance wylądował na Marsie po trwającej ponad pół roku podróży. W tym czasie był narażony na oddziaływanie dużych dawek promieniowania kosmicznego, które dodatkowo mogło zostać gwałtownie zwiększone przez koronalne wyrzuty masy ze Słońca. Na takie właśnie szkodliwe dla zdrowia promieniowanie narażeni będą astronauci podróżujący na Marsa. W przeciwieństwie do załogi Międzynarodowej Stacji Kosmicznej nie będą oni chronieni przez ziemską magnetosferę. Dlatego też wszelkie metody skrócenia podróży są na wagę zdrowia i życia.
      Emmanuel Duplay i jego koledzy z kanadyjskiego McGill University zaprezentowali na łamach Acta Astronautica interesującą koncepcję laserowego systemu napędowy, który mógłby skrócić załogową podróż na Marsa do zaledwie 45 dni.
      Pomysł na napędzanie pojazdów kosmicznych za pomocą laserów nie jest niczym nowym. Jego olbrzymią zaletą jest fakt, że system napędowy... pozostaje na Ziemi. Jedną z rozważanych technologii jest wykorzystanie żagla słonecznego przymocowanego do pojazdu. Żagiel taki wykorzystywałby ciśnienie fotonów wysyłanych w jego kierunku z laserów umieszczonych na Ziemi. W ten sposób można by rozpędzić pojazd do nieosiągalnych obecnie prędkości.
      Jednak system taki może zadziałać wyłącznie w przypadku bardzo małych pojazdów. Dlatego Duplay wraz z zespołem proponują rozwiązanie, w ramach którego naziemny system laserów będzie rozgrzewał paliwo, na przykład wodór, nadając pęd kapsule załogowej.
      Pomysł Kanadyjczyków polega na stworzeniu systemu laserów o mocy 100 MW oraz pojazdu załogowego z odłączanym modułem napędowym. Moduł składałby się z olbrzymiego lustra i komory wypełnionej wodorem. Umieszczone na Ziemi lasery oświetlałby lustro, które skupiałoby światło na komorze z wodorem. Wodór byłby podgrzewany do około 40 000 stopni Celsjusza, gwałtownie by się rozszerzał i uchodził przez dyszę wylotową, nadając pęd kapsule załogowej. W ten sposób, w ciągu kilkunastu godzin ciągłego przyspieszania kapsuła mogłaby osiągnąć prędkość około 14 km/s czyli ok. 50 000 km/h, co pozwoliłoby na dotarcie do Marsa w 45 dni. Sam system napędowy, po osiągnięciu przez kapsułę odpowiedniej prędkości, byłby od niej automatycznie odłączany i wracałby na Ziemię, gdzie można by go powtórnie wykorzystać.
      Drugim problemem, obok stworzenia takiego systemu, jest wyhamowanie pojazdu w pobliżu Marsa. Naukowcy z McGill mówią, że można to zrobić korzystając z oporu stawianego przez atmosferę Czerwonej Planety, jednak tutaj wciąż jest sporo niewiadomych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...