Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Magnetyczne dawkowanie

Recommended Posts

Implanty wysycone lekami są jedną z najbardziej obiecujących form leczenia wielu chorób. Są one wygodne i uwalniają pacjenta np. od przyjmowania licznych zastrzyków, lecz jest to, niestety, powiązane z brakiem kontroli nad dawkowaniem leku. Ta niekorzystna sytuacja może się jednak zmienić, bowiem zespół dr. Daniela Kohane'a z Children's Hospital Boston opracował metodę dozowania leku z wykorzystaniem pola magnetycznego.

Urządzenie opracowane przez amerykańskich badaczy ma średnicę zaledwie 1 cm, dzięki czemu wszczepienie go do wnętrza organizmu nie stanowi żadnego problemu. Jego sercem jest komora wypełniona lekiem oraz nanocząstkami magnetytu - aktywnego magnetycznie minerału złożonego z tlenku żelaza (II) i żelaza (III). Zbiorniczek jest otoczony warstwą reagującego na ciepło żelu, pełniącego funkcję regulatora dawek przechowywanej substancji.

W temperaturze odpowiadającej ciepłocie ciała żel uniemożliwia wyciek leku. Po przyłożeniu pola magnetycznego dochodzi jednak do rozgrzania drobin magnetytu, czego efektem jest chwilowe zaburzenie struktury żelowej membrany i powstanie porów ułatwiających ucieczkę leczniczego ładunku. Po wyłączeniu źródła pola magnetycznego błona zamyka się, a niewykorzystana dawka leku zostaje zamknięta we wnętrzu zbiornika.

O potencjalnej przydatności implantu świadczą testy na zwierzętach, w których wykazano, że utrzymuje on swoją aktywność aż do 45 dni i pozwala na precyzyjne dozowanie zawartej w jego wnętrzu substancji. Temperatura jego aktywacji została przy tym dobrana tak, by nie uruchamiał się on np. w czasie gorączki, lecz jednocześnie nie stanowił zagrożenia dla organizmu podczas nagrzewania się.

Przedstawiciele amerykańskich Narodowych Instytutów Zdrowia (NIH), sponsora badań nad terapeutycznym implantem, są pełni nadziei na dalszy rozwój wynalazku. Ich zdaniem ostateczne wersje urządzenia mogą być bardzo przydatne ze względu na możliwość precyzyjnego dawkowania leków oraz uwolnienia pacjentów od konieczności regularnego przyjmowania zastrzyków.

Share this post


Link to post
Share on other sites

A co z różnymi źródłami pola magnetycznego?

Za słabe?! Podejrzewam, że będzie potrzebny niezły elektromagnes bezpośrednio przyłożony, bądź wykonanie rezonansu magnetycznego.

Share this post


Link to post
Share on other sites

Też się spodziewam, że za słabe. Moc potrzebna do rozgrzania grudki magnetytu na pewno jest na tyle duża, że nie zaszkodzi pacjentowi wejście pod linię wysokiego napięcia ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po trzech latach pracy inżynierom z MIT udało się zwiększyć moc wysokotemperaturowego nadprzewodzącego elektromagnesu dla reaktorów fuzyjnych do rekordowych 20 tesli. Tym samym stworzyli najpotężniejszy magnes tego typu. Osiągnięcie to pozwoli na zbudowanie pierwszej elektrowni fuzyjnej, zdolnej do wygenerowania większej ilości energii niż sama pobiera.
      Przed zaledwie 3 miesiącami informowaliśmy, że po dziesięciu latach prac projektowych i produkcyjnych firma General Atomics jest gotowa do dostarczenia pierwszego modułu Central Solenoid, jednego z najpotężniejszych magnesów na świecie. Będzie on centralnym elementem reaktora fuzyjnego ITER. Central Solenoid to główny wkład USA w tę instalację. Będzie on generował pole magnetyczne o mocy 13 tesli, czyli 280 000 razy większe od ziemskiego pola magnetycznego. Magnes z MIT generuje pole magnetyczne silniejsze o 50%.
      Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówi profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
      Osiągnięcie naukowców z MIT daje nadzieję na uzyskanie w laboratorium zysku energetycznego netto drogą fuzji jądrowej. To zaś znakomicie ułatwi i przyspieszy prace nad tą technologią. Teraz, gdy udało się przeprowadzić udane testy tak potężnego magnesu dla reaktorów fuzyjnych konsorcjum MIT-CMS będzie chciało wybudować pierwszą na świecie demonstracyjną elektrownię fuzyjną, zwaną SPARC, uzyskującą dodatni bilans energetyczny. Wspomniany magnes to krok milowy na drodze do jej budowy. Dzięki niemu jest szansa, że SPARC powstanie już za 4 lata.
      CFS (Commonwealth Fusion Systems) to firma założona w 2018 roku w Plasma Science and Fusion Center na MIT. Jest finansowana m.in. przez włoski koncern ENI, założoną przez Billa Gatesa Breakthrough Energy Ventures  czy singapurską Temasek. Firma współpracuje z Departamentem Energii, MIT oraz Princeton Plasma Physics Laboratory, a jej celem jest wybudowanie kompaktowej elektrowni fuzyjnej opartej na stworzonej na MIT koncepcji tokamaka ARC.
      Żeby zrozumieć, po co w reaktorach fuzyjnych tak potężne magnesy, trzeba wiedzieć, że do zaistnienia fuzji jądrowej potrzebne są olbrzymie temperatury, sięgające 100 milionów stopni Celsjusza i więcej. Takich temperatur nie wytrzyma żadne ciało stałe. Dlatego też plazmę, w której będzie zachodziła fuzja, trzeba utrzymać z dala od ścian reaktora. Można to zrobić za pomocą silnego pola magnetycznego. I właśnie temu – zawieszeniu plazmy w przestrzeni – służą potężne elektromagnesy.
      Główna innowacja projektu ARC polega na wykorzystaniu wysokotemperaturowych nadprzewodników, które pozwalają na uzyskanie znacznie silniejszego pola magnetycznego w mniejszej przestrzeni. Materiały pozwalające na stworzenie takiego magnesu pojawiły się na rynku dopiero kilka lat temu. Koncepcja ARC powstała w 2015 roku. Demonstracyjny reaktor SPARC ma być o połowę mniejszy niż pełnowymiarowy ARC i ma posłużyć do przetestowania projektu.
      Prace nad fuzją jądrową trwają na MIT od dawna. W ubiegłym roku pojawiło się kilka artykułów naukowych, których autorzy donosili, że jeśli uda się wyprodukować takie magnesy, jak założono, to reaktory typu ARC rzeczywiście powinny wytwarzać więcej energii niż zużyją.
      Nasz projekt wykorzystuje standardową fizykę plazmy oraz projekt i założenia inżynieryjne konwencjonalnego tokamaka, ale łączy je z nową technologią wytwarzania magnesów. Zatem nie potrzebowaliśmy innowacji na kilku polach. Naszym celem było stworzenie odpowiedniego magnesu, a następnie zastosowanie w praktyce tego, czego nauczyliśmy się w ciągu ostatnich kilku dekad, mówi Martin Greenwald z Plasma Science and Fusion Center.
      To wielka chwila, dodaje Bob Mumgaard, dyrektor wykonawczy CFS. Dysponujemy teraz platformą, która dzięki dziesięcioleciom badań nad tego typu rozwiązaniami jest bardzo zaawansowana z naukowego punktu widzenia i jednocześnie bardzo interesująca z komercyjnego punktu widzenia. To pozwoli nam szybciej budować mniejsze i tańsze reaktory. Trzy lata temu ogłosiliśmy, że zamierzamy zbudować magnes o mocy 20 tesli, który będzie potrzebny do przyszłych reaktorów fuzyjnych. Osiągnęliśmy nasz cel bez żadnych opóźnień, dodaje.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy opracował metodę przechowywania danych, która niemal nie zużywa energii. Cyfrowe dane są zapisane na nośniku magnetycznym, który nie potrzebuje zasilania. Cała metoda jest niezwykle szybka i rozwiązuje problem zwiększenia wydajności przetwarzania danych bez zwiększania poboru energii.
      Obecnie centra bazodanowe odpowiadają za 2–5 procent światowego zużycia energii. W czasie ich pracy generowane są olbrzymie ilości ciepła, które wymagają dużych ilości energii przeznaczonej na chłodzenie. Problem jest na tyle poważny, że np. Microsoft zatopił centra bazodanowe w oceanie, by je lepiej chłodzić i obniżyć koszty.
      Większość danych przechowywanych jest w formie cyfrowej, gdzie 0 i 1 są reprezentowane za orientacji domen magnetycznych. Nad materiałem magnetycznym przesuwa się głowica odczytująco/zapisująca.
      Teraz na łamach Nature dowiadujemy się o nowej metodzie zapisu, która wykorzystuje niezwykle krótkie, trwające bilionowe części sekundy, impulsy światła, które wysyłane są do anten umieszczonych na magnesach. Całość pracuje niezwykle szybko i niemal nie zużywa przy tym energii, gdyż temperatura magnesów nie rośnie.
      Autorzy nowej metody wykorzystali impulsy światła w zakresie dalekiej podczerwieni, w paśmie teraherców. Jednak nawet najpotężniejsze terahercowe źródła światła nie są na tyle mocne, by zmienić orientację pola magnetycznego. Przełom nadszedł, gdy uczeni opracowali wydajny mechanizm sprzęgania pomiędzy spinem pola magnetycznego i terahercowym polem elektrycznym. Następnie stworzyli miniaturowe anteny, które pozwalają skoncentrować, a zatem i wzmocnić pole elektryczne światła. Okazało się ono na tyle silne, że można za jego pomocą zmieniać spin w ciągu bilionowych części sekundy.
      Temperatura magnesu nie rośnie podczas pracy, gdyż cały proces zapisu wymaga jednego kwanta energii na spin. Rekordowo niski pobór energii czyni tę metodę skalowalną. Przyszłe systemy do składowania danych będą mogły wykorzystać również świetne zdefiniowanie przestrzenne anten, co pozwoli na stworzenie praktycznych układów pamięci magnetycznej o maksymalnej prędkości i efektywności energetycznej, mówi jeden z autorów badań, doktor Rościsław Michajłowskij z Lancaster University.
      Uczony planuje przeprowadzenie kolejnych badań, podczas których chce wykorzystać nowy ultraszybki laser z Lancaster University oraz akceleratory z Cockroft Institute zdolne do generowania intensywnych impulsów światła. Chce w ten sposób określić praktyczne i fundamentalne limity prędkości i energii dla zapisu magnetycznego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowotwory to jedna z głównych przyczyn zgonów w krajach uprzemysłowionych. Wiele z nich potrafimy leczyć lub kontrolować, ale mimo to wciąż umiera na nie duża liczba ludzi. Przyczyną jest zbyt późna diagnoza. Opracowanie metody wczesnego wykrywania rozwijającego się nowotworu pozwoliłoby nie tylko uratować życie wielu ludziom, ale znacząco obniżyłoby koszty terapii.
      Potencjalną metodę ostrzegania o początkach nowotworu opracował profesor Martin Fusseneger ze Szwajcarskiego Instytutu Technologicznego w Zurichu i współpracujący z nim naukowcy. Wykorzystuje ona sieć syntetycznych genów rozpoznających bardzo wczesne etapy rozwoju nowotworów prostaty, płuc, piersi i jelita grubego. Na tych wczesnych etapach dochodzi do zwiększenia poziomu wapnia we krwi i właśnie ten podniesiony poziom wykrywa system Fussenegera.
      Wspomniana sieć genów jest umieszczana w implancie, który wstrzykiwany jest pod skórę, gdzie bez przerwy monitoruje poziom wapnia we krwi. Gdy poziom ten zostaje przez dłuższy czas przekroczony, uruchamiana jest cała kaskada sygnałów, które powodują, że we wstrzykniętej w określone miejsce na skórze zmodyfikowanej genetycznie grupie komórek dochodzi do produkcji melaniny. Na skórze pojawia się widoczne gołym okiem zaciemnione miejsce, które jest sygnałem ostrzegawczym o rozwijającym się nowotworze. Co istotne, sygnał ten pojawia się na długo zanim jeszcze nowotwór można wykryć za pomocą standardowych metod diagnostycznych. Posiadacz implantu powinien wówczas udać się do lekarza w celu specjalistycznej diagnostyki, mówi Fussenegger.
      Naukowcy wykorzystali jako wskaźnik poziom wapnia, gdyż jest on ściśle kontrolowany przez organizm. Kości służą jako bufor regulujący poziom wapnia we krwi. Zbyt duża ilość tego pierwiastka może być sygnałem o rozwoju jednego z czterech wspomnianych typów nowotworów. Wczesna diagnostyka to klucz do sukcesu. Na przykład w przypadku raka piersi szanse na wyleczenie przy wczesnej diagnozie wynoszą aż 98%, podczas gdy przy późnej diagnozie spadają do 25%. Obecnie ludzie trafią do lekarza przeważnie wówczas, gdy guz daje jakieś objawy. Niestety, często jest wówczas zbyt późno, stwierdza Fussenegger.
      Nawiększym ograniczeniem nowej metody jest krótki czas życia implantu. Jak mówi Fussenegger, z literatury specjalistycznej wynika, że po zamknięciu w odpowiednich kapsułach żywe komórki mogą przetrwać około roku. Po tym czasie implant trzeba będzie zapewne wymieniać.
      Na razie naukowcy dysponują wczesnym prototypem implantu. Był on z powodzeniem testowany na myszach i świniach. Profesor Fusseneger mówi, że opracowanie w pełni rozwiniętej wersji dla ludzi oraz proces jej testowania i dopuszczania do użytku potrwają co najmniej 10 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Stanforda są pierwszymi, którzy uzyskali system składający się z „zaprojektowanych elektronów“. Pozwala to na dobranie właściwości elektronów, a w przyszłości umożliwi stworzenie nowych typów materiałów.
      Sercem wszystkich dzisiejszych technologii jest zachowanie się elektronów w materiale. Teraz jesteśmy w stanie dobrać podstawowe właściwości elektronów tak, by zachowywały się one w sposób rzadko spotykany w zwykłych materiałach - mówi profesor Hari Manoharan.
      Pierwszym stworzonym w ten sposób materiałem jest struktura w kształcie plastra miodu, zainspirowana grafenem. Naukowcy nazwali ją „molekularnym grafenem“.
      Uczeni za pomocą skaningowego mikroskopu elektronowego umieszczali pojedyncze molekuły tlenku węgla na idealnie gładkiej powierzchni miedzi. Węgiel odpychał wolne elektrony z atomów miedzi i zmuszał je do utworzenia heksagonalnej struktury, w której miały właściwości podobne do elektronów w grafenie, czyli zachowywały się tak, jakby nie miały masy. Aby odpowiednio dobrać ich właściwości uczeni przesuwali molekuły CO, co zmieniało symetrie przepływu elektronów. W pewnych ustawieniach zachowywały się one tak, jakby były wystawione na działanie pola elektrycznego bądź magnetycznego. Inne ułożenie molekuł umożliwiało np. na precyzyjne dobranie gęstości elektronów na powierzchni. Możliwe było też wyznaczenie obszarów, na których elektrony zachowywały się tak, jakby posiadały masę. Jedną z najbardziej niesamowitych rzeczy, którą osiągnęliśmy jest spowodowanie, by elektrony zachowywały się tak, jakby znajdowały się w silnym polu magnetycznym, podczas gdy w rzeczywistości nie ma żadnego pola - stwierdza Manoharan. Dzięki teorii opracowanej przez współautora badań, którym jest Francisco Guinea z Hiszpanii, naukowcy byli w stanie obliczyć, jak ułożyć atomy węgla, by elektrony zachowywały się jak zostały poddane polu magnetycznemu do 60 tesli.
      To nowe pole do badań dla fizyki. Grafen molekularny to pierwsza z wielu możliwych struktur. Sądzimy, że nasze badania pozwolą na stworzenie nowych przydatnych w elektronice materiałów - mówi Manoharan.
    • By KopalniaWiedzy.pl
      Jak wrócić do domu, gdy się jest małą mrówką i mieszka na pustyni? Można korzystać z polaryzacji światła słonecznego, liczenia kroków czy dwutlenku węgla wydychanego przez owady w gnieździe. Okazuje się też, że w wyjątkowych sytuacjach udaje się skorzystać ze wskazówek magnetycznych i wibracyjnych.
      Naukowcy z Instytutu Ekologii Chemicznej Maxa Plancka w Jenie przeprowadzili eksperymenty na mrówkach z rodzaju Cataglyphis w ich naturalnym środowisku w Tunezji i Turcji. Wyniki studium ukazały się w pismach PLoS ONE i Current Biology.
      Niemcy sprawdzali, czy przy braku wskazówek innego rodzaju mrówki posłużą się magnetyzmem i drganiami. Jak ujawnia doktorantka Cornelia Buehlmann, dokładnie tak było. Wytrenowane C. noda bez problemu wskazywały swoje gniazdo, kiedy przed wejściem do niego zamontowano zasilane bateriami urządzenie wibracyjne. By wykluczyć elektromagnetyczny wpływ urządzenia, umieszczono je też w taki sposób, że nie miało kontaktu z gruntem. Wtedy wytrenowane mrówki zachowywały się tak samo jak ich towarzyszki z grupy kontrolnej - poruszały się bez celu. Jeśli nad gruntem w pobliżu wejścia do gniazda umieszczono dwa silne magnesy neodymowe, które wytwarzały pole o natężeniu ok. 21 militesli (pole magnetyczne Ziemi wynosi, dla porównania, 0,041 militesli), mrówki znowu bez problemu trafiały do domu.
      Nie wiadomo, który ze zmysłów mrówki wykorzystują, orientując się na podstawie sztucznego pola magnetycznego wokół gniazda. To nie oznacza, że mrówki mają narząd czuciowy do wykrywania pól magnetycznych. Ich zachowanie może również być wynikiem zmienionych wzorców komunikacji elektrycznej między neuronami, które owady zapamiętują. Co ciekawe, reakcja pojawia się, choć w naturze C. noda nie spotkają się raczej ani z drganiami, ani z silnymi magnesami. Jak widać, przystosowując się do nieprzyjaznych życiu środowisk, mrówki mogą polegać na wszystkich zmysłach.
      Zamieszkujące tunezyjskie pustynie solne mrówki Cataglyphis fortis polegają na zapachu gniazda. Podczas eksperymentów poruszały się pod wiatr (czyli jakby wzdłuż "śladu" dwutlenku węgla z gniazda), jeśli stężenie CO2 nie było zbyt wysokie i odpowiadało poziomowi występującemu zwykle wokół norki. Jak jednak rozpoznać własne gniazdo, skoro bez względu na kolonię owady wydzielają taki sam gaz? Niemcy wyjaśniają, że mrówki polegają głównie na integracji trasy - polaryzacji światła i liczeniu kroków. Gdy mrówki przeniesiono w pobliże gniazda po tym, jak udały się do źródła pokarmu, unikały podążania za wyziewami z własnej norki, bo nie pasowała im liczba kroków.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...