Pneumatyczny procesor
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.
Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.
U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.
Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.
To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.
Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Od dekad elastyczna elektronika była niewielką niszą. Teraz może być gotowa, by wejść do mainstream'u, stwierdził Rakesh Kumar, lider zespołu, który stworzył plastikowy procesor. O elektronice zintegrowanej w praktycznie każdym przedmiocie, od podkoszulków poprzez butelki po owoce, słyszymy od lat. Dotychczas jednak plany jej rozpowszechnienia są dalekie od realizacji, a na przeszkodzi stoi brak elastycznego, plastikowego, wydajnego i taniego procesora, który można by masowo produkować.
Wiele przedsiębiorstw próbowało stworzyć takie urządzenie i im się nie udało. Według naukowców z amerykańskiego University of Illinois Urbana-Champaign i specjalistów z brytyjskiej firmy PragmatIC Semiconductor, problem w tym, że nawet najprostszy mikrokontroler jest zbyt złożony, by można go było masowo wytwarzać na plastikowym podłożu.
Amerykańsko-brytyjski zespół zaprezentował właśnie uproszczony, ale w pełni funkcjonalny, plastikowy procesor, który można masowo produkować bardzo niskim kosztem. Przygotowano dwie wersje procesora: 4- i 8-bitową. Na substracie z 4-bitowymi układami, których koszt masowej produkcji liczyłby się dosłownie w groszach, działa 81% procesorów. To wystarczająco dobry wynik, by wdrożyć masową produkcję.
Procesory wyprodukowano z cienkowarstwowego tlenku indowo-galowo-cynkowego (IGZO), dla którego podłożem był plastik. Innowacja polegała zaś na stworzeniu od podstaw nowej mikroarchitektury – Flexicore.Musiała być maksymalnie uproszczona, by sprawdziła się w na plastiku. Dlatego zdecydowano się na układy 4- i 8-bitowe zamiast powszechnie wykorzystywanych obecnie 16- i 32-bitowych. Naukowcy rozdzielili moduły pamięci przechowującej instrukcje od pamięci przechowującej dane. Zredukowano również liczbę i stopień złożoności instrukcji, jakie procesor jest w stanie wykonać. Dodatkowym uproszczeniem jest wykonywanie pojedynczej instrukcji w jednym cyklu zegara.
W wyniku wszystkich uproszczeń 4-bitowy FlexiCore składa się z 2104 podzespołów. To mniej więcej tyle samo ile tranzystorów posiadał procesor Intel 4004 z 1971 roku. I niemal 30-krotnie mniej niż konkurencyjny PlasticARM zaprezentowany w ubiegłym roku. Uproszczenie jest więc ogromne. Stworzono też procesor 8-bitowy, jednak nie sprawuje się on tak dobrze, jak wersja 4-bitowa.
Obecnie trwają testy plastikowych plastrów z procesorami. Są one sprawdzane zarówno pod kątem wydajności, jak i odporności na wyginanie. Jednocześnie twórcy procesorów prowadzą prace optymalizacyjne, starając się jak najlepiej dostosować architekturę do różnych zadań. Jak poinformował Kumar, badania już wykazały, że można znacznie zredukować pobór prądu, nieco zbliżając do siebie poszczególne bramki.
« powrót do artykułu -
By KopalniaWiedzy.pl
W procesorach Intela odkryto kolejną lukę. Dziura nazwana CacheOut to luka typu side-channel, czyli błąd pozwalający na wykorzystanie pewnych szczegółów, często prawidłowej, implementacji.
Dziura odkryta przez naukowców z University of Michigan i University of Adelaide występuje we wszystkich procesorach od architektury SkyLake po Coffee Lake powstałych przed rokiem 2019. Wiadomo, że nie występuje ona w procesorach AMD, ale badacze nie wykluczają, że jest obecna w układach IBM-a i ARM.
Jak zauważyli eksperci gdy dane są pobierane z cache'u L1 często trafiają do buforów, z których mogą zostać wykradzione przez napastnika. Bardzo atrakcyjnym elementem CacheOut jest fakt, że napastnik może zdecydować, które dane z L1 zostaną umieszczone w buforze, skąd dokona kradzieży. Specjaliści wykazali, że możliwy jest wyciek danych mimo wielu różnych zabezpieczeń. w tym zabezpieczeń pomiędzy wątkami, procesami, wirtualnymi maszynami, przestrzenią użytkownika a jądrem systemu.
Intel, który o problemie został poinformowany już w ubiegłym roku, sklasyfikował lukę L1D Eviction Sampling/CVE-2020-0549/INTEL-SA-00329 jako średnio poważną i przygotował odpowiednie poprawki. Odpowiedni mikrokod zostanie upubliczniony a nwjbliższym czasie. Tymczasowym obejściem problemu jest wyłączenie wielowątkowości lub wyłączenie rozszerzenia TSX.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na MIT powstał nowoczesny mikroprocesor z tranzystorami z nanorurek węglowych. Urządzenie można wyprodukować za pomocą technik używanych obecnie przez przemysł półprzewodnikowy, co ma olbrzymie znaczenie dla ewentualnego wdrożenia.
Nanorurki węglowe są od dawna przedmiotem zainteresowań, gdyż dają nadzieję na zbudowanie kolejnej generacji komputerów po tym, gdy układów krzemowych nie będzie można już miniaturyzować. Tranzystory polowe z nanorurek węglowych (CNFET) mogą mieć bardzo obiecujące właściwości. Z dotychczasowych badań wynika, że powinny być one około 10-krotnie bardziej efektywne pod względem zużycia energii i pozwolić na przeprowadzanie obliczeń ze znacznie większą prędkością. Problem jednak w tym, że przy masowej produkcji w nanorurkach pojawia się tak wiele defektów, że nie można ich w praktyce wykorzystać.
Naukowcy z MIT opracowali nową technikę, która znacząco zmniejsza liczbę defektów i daje pełną kontrolę nad produkcję CNFET. Co ważne, technika ta wykorzystuje procesy już używane w przemyśle półprzewodnikowym. Dzięki niej na MIT wyprodukowano 16-bitowy mikroprocesor składający się z 14 000 CNFET, który jest w stanie wykonywać te same obliczenia co tradycyjny procesor.
Nowy procesor oparto na architekturze RISC-V. Testy wykazały, że jest on zdolny do wykonania pełnego zestawu instrukcji dla tej technologii.
To, jak dotychczas, najbardziej zaawansowany chip wykonany w nowym procesie nanotechnologicznym, który daje nadzieję na wysoką wydajność i efektywność energetyczną, mówi współautor badań, profesor Max M. Shulaker. Krzem ma swoje ograniczenia. Jeśli chcemy coraz szybszych komputerów, to węglowe nanorurki są najbardziej obiecującym materiałem. Nasze badania pokazują zupełnie nowy sposób budowy układów scalonych z węglowymi nanorurkami.
Shulaker i jego zespół od dawna pracują nad układami scalonymi z CNFET. Przed sześcioma laty byli w stanie zaprezentować procesor złożony ze 178 CNFET, który mógł pracować na pojedynczym bicie danych. Od tamtego czasu uczeni skupili się na rozwiązaniu trzech kluczowych problemów: defektach materiałowych, niedociągnięciach produkcyjnych oraz problemach funkcjonalnych.
Największym problemem było uzyskanie nanorurek odpowiedniej jakości. Żeby CNFET działał bez zakłóceń, musi bez problemów przełączać się pomiędzy stanem 0 i 1, podobnie jak tradycyjny tranzystor. Jednak zawsze podczas produkcji powstanie jakaś część nanorurek, które będą wykazywały właściwości metalu, a nie półprzewodnika. Takie nanorurki czynią CNFET całkowicie nieprzydatnym. Zaawansowane układy scalone, by być odpornymi na obecność wadliwych nanorurek i móc szybko wykonywać zaawansowane obliczenia, musiałyby korzystać z nanorurek o czystości sięgającej 99,999999%. Obecnie jest to niemożliwe do osiągnięcia.
Naukowcy z MIT opracowali technikę nazwaną DREAM (designing resilency against metallic CNT), która tak pozycjonuje metaliczne CNFET, że nie zakłócają one obliczeń. Dzięki temu zmniejszyli wymagania dotyczące czystości nanorurek aż o cztery rzędy wielkości. To zaś oznacza, że do wyprodukowania w pełni sprawnego układu potrzebują nanorurek o czystości sięgającej 99,99%, a to jest obecnie możliwe.
Uczeni przeanalizowali różne kombinacje bramek logicznych i zauważyli, że metaliczne nanorurki węglowe nie wpływają na nie w ten sam sposób. Okazało się, że pojedyncza metaliczna nanorurki w bramce A może uniemożliwić komunikację pomiędzy nią, a bramką B, ale już liczne metaliczne nanorurki w bramce B nie wpływają negatywnie na jej możliwości komunikacji z żadną bramką. Przeprowadzili więc symulacje, by odnaleźć wszystkie możliwe kombinacje bramek, które byłyby odporne na obecność wadliwych nanorurek. Podczas projektowania układu scalonego brano pod uwagę jedynie te kombinacje. Dzięki technice DREAM możemy po prostu kupić komercyjne dostępne nanorurki, umieścić je na plastrze i stworzyć układ scalony, nie potrzebujemy żadnych specjalnych zabiegów, mówi Shulaker.
Produkcja CNFET rozpoczyna się od nałożenia znajdujących się w roztworze nanorurek na podłoże z predefiniowanym architekturą układu. Jednak nie do uniknięcia jest sytuacja, w której część nanorurek pozbija się w grupy, tworząc rodzaj dużych cząstek zanieczyszczających układ scalony. Poradzono sobie z tym problemem tworząc technikę RINSE (removal of incubated nanotubes through selective exfoliation). Na podłoże nakłada się wcześniej związek chemiczny, który ułatwia nanorurkom przyczepianie się do niego. Następnie, już po nałożeniu nanorurek, całość pokrywana jest polimerem i zanurzana w specjalnym rozpuszczalniku. Rozpuszczalnik zmywa polimer, a ten zabiera ze sobą pozbijane w grupy nanorurki. Te zaś nanorurki, które nie zgrupowały się z innymi, pozostają przyczepione do podłoża. Technika ta aż 250-kronie zmniejsza zagęszczenie zbitek nanorurek w porównaniu z alternatywnymi metodami ich usuwania.
Poradzono sobie też z ostatnim problemem, czyli wytworzeniem tranzystorów typu N i typu P. Zwykle produkcja tych tranzystorów z węglowych nanorurek kończyła się uzyskaniem urządzeń o bardzo różniącej się wydajności. Problem rozwiązano za pomocą nowej techniki o nazwie MIXED (metal interface engineering crossed with electrostatic doping), dzięki której możliwe jest precyzyjna optymalizacja procesorów do wymaganych zadań. Technika ta polega na dołączeniu do każdego tranzystora, w zależności czy ma być on P czy N, odpowiedniego metalu, platyny lub tytanu. Następnie tranzystory są pokrywane tlenkiem, co pozwala na ich dostosowanie do zadań, jakie będą spełniały. Można więc osobno dostroić je do pracy w zastosowaniach w wysoko wydajnych serwerach, a osobno do energooszczędnych implantów medycznych.
Obecnie, w ramach programu prowadzonego przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych), wspomniane techniki produkcji układów scalonych z węglowych nanorurek wdrażane są w fabrycznych liniach produkcyjnych. W tej chwili nikt nie potrafi powiedzieć, kiedy w sklepach pojawią się pierwsze procesory z CNFET. Shulaker mówi, że może się to stać już w ciągu najbliższych pięciu lat. Sądzimy, że teraz to już nie jest pytanie czy, ale pytanie kiedy, mówi uczony.
« powrót do artykułu -
By KopalniaWiedzy.pl
Firma Adapteva ogłosiła, że wkrótce zacznie produkować próbną wersję 64-rdzeniowego procesora wykonanego w technologii 28 nanometrów. Układ E64G4 korzysta z technologii Epiphany, która została stworzona pod kątem takich zastosowań jak rozpoznawanie mowy czy przetwarzanie grafiki.
Adapteva specjalizuje się w tworzeniu aplikacji na rynek finansowy, wojskowy i inżynieryjny, teraz zaś chce zaistnieć na rynku urządzeń przenośnych.
W firmę zainwestowano zaledwie 2 miliony dolarów, teraz przygotowuje ona swój czwarty układ scalony i wkrótce przestanie przynosić straty. Andreas Olofsson, założyciel i szef Adaptevy mówi, że mimo iż same maski litograficzne kosztują miliony dolarów, to przedsiębiorstwo może działać, gdyż wybrało model multiproject wafer (MPW), w którym koszty masek podzielone są pomiędzy klientów firmy. Ponadto Adapteva działa na rynkach, na których produkuje się niewielkie serie drogich układów. Pojedynczy procesor może kosztować nawet 1000 dolarów.
Od lata 2011, kiedy to Adapteva wyprodukowała swój pierwszy układ scalony, 16-rdzeniowy procesor wykonany w technologii 65 nanometrów, wpływy przedsiębiorstwa wyniosły milion dolarów.
Obecnie ma powstać czwarta generacja układu Epiphany. Kość będzie składała się z 64 rdzeni RISC, z których każdy zostanie wyposażony w 32 kilobajty pamięci podręcznej. Całość zmieści się na powierzchni 8,2 mm2 i będzie, jak twierdzi Adapteva, najbardziej efektywnym energetycznie układem scalonym. Jego wydajność ma wynieść 70 GFlops/wat.
Kość taktowana będzie zegarem o częstotliwości do 700 MHz.
Ambicje firmy jednak się na tym nie kończą. Architektura Epiphany ma umożliwić produkcję procesora składającego się z 4096 rdzeni.
Układy na zamówienie Adaptevy są produkowane w fabrykach Globalfoundries.
-
-
Recently Browsing 0 members
No registered users viewing this page.