Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy sposób na tworzenie czarnych dziur

Recommended Posts

Naukowcy z amerykańskiego Dartmouth College opracowali nowy sposób tworzenia miniaturowych czarnych dziur na potrzeby badawcze. Ma ona pozwolić na sprawdzenie, czy Stephen Hawking ma rację twierdząc, że czarne dziury emitują fotony, a więc, chcą poszukać dowodów na istnienie promieniowania Hawkinga.

Wielki fizyk początkowo był przeciwnikiem teorii istnienia czarnych dziur. Później jednak uznał jej słuszność, jednak zauważył, że gdyby czarne dziury były rzeczywiście takimi obiektami, jak początkowo sądzono - a więc gdyby nic się z nich nie wydostawało - to byłyby niezwykle stabilne, ciągle wchłaniałyby materię, aż w końcu wchłonęłyby cały wszechświat. Teoria Hawkinga o promieniowaniu z czarnych dziur jest uznawana za prawdziwą, jednak dotychczas nie została udowodniona. Znalezienie takiego dowodu byłoby bardzo ważnym krokiem na drodze do połączenia mechaniki kwantowej i ogólnej teorii względności.

Paul Nation, jeden z badaczy z Dartmouth College, mówi, że obliczenia [Hawkinga - red.] bazują na założeniach z dziedziny fizyki wysokich energii i grawitacji kwantowej. Ponieważ nie możemy jeszcze robić pomiarów z prawdziwych czarnych dziur, musimy znaleźć sposób na ich stworzenie w laboratorium, by je badać i sprawdzić teorię.

Naukowcy wykazali, że transmisja mikrofalowa w polu magnetycznym zawierającym siatkę magnetometrów SQUID (Superconducting Quantum Interference Device) pozwala uzyskać warunki takie, jakie muszą panować w promieniującej czarnej dziurze. Co więcej cały system jest dobrze rozumiany przez współczesną naukę i może być kontrolowany w warunkach laboratoryjnych. Innymi słowy, jak stwierdzili autorzy nowej metody, umożliwia ona badanie analogicznych kwantowych efektów grawitacyjnych. Miles Blencowe, profesor fizyki i astronomii zauważył również, że urządzenia można nastawić tak, by radiacja była większa niż przewidywana przez Hawkinga. To daje, oczywiście, jeszcze większe możliwości badawcze.

Dotychczas proponowano odtwarzanie czarnych dziur za pomocą przepływu płynów z prędkością naddźwiękową, kondensatu Bosego-Einsteina czy nielinearnych światłowodów. Jednak metody takie się nie sprawdzały. Albo promieniowanie było niezwykle słabe, ale było zagłuszane promieniowaniem rozgrzewających się urządzeń.

Share this post


Link to post
Share on other sites

Może się czepiam, ale promień Schwarzschilda jest proporcjonalny do masy, natomiast masa jest proporcjonalna do trzeciej potęgi promienia ... czyli żeby masa o gęstości jądra atomowego znalazła się wewnątrz swojego horyzontu zdarzeń musi mieć olbrzymi promień - powyżej czegoś rzędu kilometra ... owszem - pytanie czy nie można uzyskać duuuuużo większych gęstości ... raczej wątpię, a jeśli nawet to zdecydowanie nie w SQUIDzie tylko w raczej w plaźmie kwarkowo-gluonowej albo kondensacie bozonowym ... pary Coopera to efekt modyfikacji sieci krystalicznej - w pewnym przybliżeniu tak się zachowują, ale jednak to nie bozony.

Share this post


Link to post
Share on other sites

'' Teoria Hawkinga o promieniowaniu z czarnych dziur jest uznawana za prawdziwą, jednak dotychczas nie została udowodniona. ''                                                 

 

.

 

 

 

 

To tylko teoria więc nie może być uznawana za prawdziwą do czasu udowodnienia . A Eter ciągle czeka na odkrycie.

Share this post


Link to post
Share on other sites

Skoro sam mówisz, że to tylko hipoteza, to dlaczego dwa zdania później mówisz o eterze tak, jakby istniał na pewno, tylko jeszcze go nie odkryto?

Share this post


Link to post
Share on other sites

heh, tak mi się a propos waszych dyskusji przypomniało, mikroos

"Najtrudniej nauczyć się tego, że nawet głupcy mają czasami rację."

— Winston Churchill

 

:P

Share this post


Link to post
Share on other sites

Teoria Hawkinga o promieniowaniu z czarnych dziur jest uznawana za prawdziwą, jednak dotychczas nie została udowodniona.

 

A jeśli teoria okaże się nieprawdziwa i czarne dziury - analogicznie jak nasze dziury drogowe - potrafią tylko rosnąć? Ciekawe jak naukowcy się pozbędą takiego niepotrzebnego rekwizytu.

Share this post


Link to post
Share on other sites

A jeśli teoria okaże się nieprawdziwa i czarne dziury - analogicznie jak nasze dziury drogowe - potrafią tylko rosnąć? Ciekawe jak naukowcy się pozbędą takiego niepotrzebnego rekwizytu.

 

Nie bądź tchórzem ;)

 

To tylko teoria więc nie może być uznawana za prawdziwą do czasu udowodnienia . A Eter ciągle czeka na odkrycie.

 

Chyba coś Ci się pomyliło. Eter nie czeka na odkrycie bo nie istnieje: http://pl.wikipedia.org/wiki/Doświadczenie_Michelsona-Morleya

Share this post


Link to post
Share on other sites

''Teoria Hawkinga o promieniowaniu z czarnych dziur jest uznawana za prawdziwą, jednak dotychczas nie została udowodniona.''

To tylko teoria więc nie może być uznawana za prawdziwą do czasu udowodnienia . A Eter ciągle czeka na odkrycie.

 

Bzdury to są, co tu piszecie, panie kolego - jest spora różnica między "jest uznawana za prawdziwą", a "jest prawdziwa".

Inną rzeczą jest dowód teorii fizycznej, bo nie jest on, w odróżnieniu od matematyki, ścisłym rozumowaniem, a tylko rosnącą liczbą doświadczeń teorię tę potwierdzających (nierzadko w połączeniu z jej elegancją, którą też nie wszyscy fizycy i nie od razu są w stanie dostrzec), a inną - wiara w jej prawdziwość, którą się właśnie fizycy posługują, by coś za prawdziwe uznać.

Nie ma zatem teorii fizycznej, która "jest prawdziwa"; jest natomiast wiele takich, które okazały się fałszywe: raz bowiem pokazawszy, że wzór nie zgadza się z przewidywaniami, posyłamy teorię do diabła (jak to się między innymi koncepcji eteru przydarzyło).

Żartobliwie można by tu zatem rzec, że fizycy to ludzie głęboko wierzący. ;)

A problem z teorią Hawkinga polega na tym, że istnieje tylko na papierze, i przekonujących dowodów ani za, ani przeciw niej jeszcze nie zdobyliśmy.

Share this post


Link to post
Share on other sites

To nie było doświadczenie, tylko oświadczenie.  8)

 

Oświadczenia składa się i bez doświadczeń: Weźmy ludzi religijnych, dla przykładu - nie wszyscy są mistykami.

Co sprawia, że fizycy przyjmują pewne teorie "na wiarę" to moim zdaniem to, że są one "eleganckie" - najogólniej mówiąc, redukują zbiór wielu, pozornie niepowiązanych parametrów, do niewielu istotnie niezależnych.

Kolejną cechą charakterystyczną "eleganckiej" teorii fizycznej jest to, że wśród swych założeń zawiera wiele takich, o których prawdziwości jesteśmy przekonani. W wypadku pracy Hawkinga, założeniem takim była niezniszczalność informacji - reszta pracy jest jego ścisłą konsekwencją.

A po przejściu trudnej drogi logicznych rozważań, dostajemy wspaniałą nagrodę, mianowicie "zasadę holograficzną", do poczytania o której zachęcam każdego, kto chciałby poczuć, jak bardzo zaprzeć dech w piersi potrafią "nieudowodnione" wnioski. ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.
      Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.
      Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.
      To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.
      Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.
      Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.
      Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki teleskopowi Gemini North na Hawajach udało się wykryć najbliższą Ziemi czarną dziurę. Obiekt Gaia BH1 ma masę 10-krotnie większą od Słońca i znajduje się w odległości 480 parseków (ok. 1560 lat świetlnych) od Ziemi w Gwiazdozbiorze Wężownika.
      Dziurę odkryto dzięki temu, że krąży wokół niej żółty karzeł typu widmowego G o masie 0,93 mas Słońca i metaliczności podobnej do słonecznej. Jest to więc gwiazda tego samego typu, co Słońce. Weź Układ Słoneczny, wsadź czarną dziurę tam, gdzie jest Słońce, a Słońce tam, gdzie jest Ziemia i masz obraz tego układu, wyjaśnia główny autor badań Kareem El-Badry, astrofizyk z Center for Astrophysics | Harvard & Smithsonian i Instytutu Astronomii im. Maksa Plancka. Okres orbitalny gwiazdy wokół Gai BH1 wynosi aż 185,6 ziemskich dni, jest więc dłuższy niż jakikolwiek znany nam okres orbitalny w podobnym układzie.
      Wielokrotnie ogłaszano odkrycie podobnych systemów, jednak niemal wszystkie te stwierdzenia zostały z czasem obalone. Tutaj mamy pierwsze jednoznaczne odkrycie w naszej galaktyce gwiazdy typu słonecznego na szerokiej orbicie wokół czarnej dziury o masie gwiazdowej, dodaje El-Badry.
      Obecne modele astronomiczne nie wą w stanie wyjaśnić, w jaki sposób mógł powstać taki system. Przede wszystkim dlatego, że skoro mamy czarną dziurę o masie 10-krotnie większej od masy Słońca, to musiała ona powstać z gwiazdy o masie co najmniej 20-krotnie większej od masy Słońca. To oznacza, że mogła ona istnieć zaledwie przez kilka milionów lat. Jeśli zaś obie gwiazdy – czyli ta, która zamieniła się w czarną dziurę i ta, która wokół niej krąży – powstały w tym samym czasie, to bardziej masywna z gwiazd na tyle szybko powinna zmienić się w czerwonego olbrzyma, pochłaniając towarzyszącą gwiazdę, że towarzyszka nie zdążyłaby wyewoluować do etapu gwiazdy ciągu głównego podobnej do Słońca. Nie wiadomo, jak towarzyszka czarnej dziury przetrwała etap czerwonego olbrzyma drugiej z gwiazd. Modele teoretyczne, które zakładają taką możliwość, mówią, że gwiazda o masie Słońca powinna znajdować się na znacznie ciaśniejszej orbicie wokół czarnej dziury.
      To oznacza, że w naszym rozumieniu tworzenia się i ewolucji czarnych dziur w układach podwójnych znajdują się spore luki, co sugeruje, że istnienie niezbadana dotychczas populacja czarnych dziur w takich układach.
      Trzeba tutaj przypomnieć, że rok temu poinformowano, iż wokół czerwonego olbrzyma V723 Mon, w odległości 460 parseków (ok.1500 lat świetlnych) od Ziemi, krąży najbliższa nam czarna dziura. Po jakimś czasie okazało się, że w układzie tym nie ma czarnej dziury.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni z MIT, LIGO oraz University of New Hampshire obliczyli ilość ciężkich pierwiastków jaka powstaje podczas łączenia się czarnych dziur z gwiazdami neutronowymi i porównali swoje dane z ilością ciężkich pierwiastków powstających podczas łączenia się gwiazd neutronowych. Hsin-Yu Chen, Salvatore Vitale i Francois Foucart wykorzystali przy tym zaawansowane systemy do symulacji oraz dane z obserwatoriów fal grawitacyjnych LIGO-Virgo.
      Obecnie astrofizycy nie do końca rozumieją, w jaki sposób we wszechświecie powstają pierwiastki cięższe niż żelazo. Uważa się, że do ich tworzenia dochodzi w dwojaki sposób. Około połowy takich pierwiastków powstaje w czasie procesu s zachodzącego w gwiazdach o niewielkiej masie (0,5–10 mas Słońca) w końcowym etapie ich życia, gdy gwiazdy te znajdują się w fazie AGB. Są wówczas czerwonymi olbrzymami. Dochodzi tam do nukleosyntezy, kiedy to w warunkach niskiej gęstości neutronów i średnich temperaturach nuklidy wyłapują szybkie neutrony.
      Z kolei mniej więcej druga połowa ciężkich pierwiastków powstaje w szybkim procesie r, podczas wybuchu supernowych i kilonowych. Dochodzi wówczas do szybkiego wychwyceniu wielu neutronów, a następnie serii rozpadów, które prowadzą do powstania stabilnego pierwiastka. Do pojawienia się tego procesu potrzebne są wysokie temperatury i bardzo gęste strumienie neutronów. Naukowcy spierają się jednak co do tego, gdzie zachodzi proces r.
      W 2017 roku LIGO-Virgo zarejestrowały połączenie gwiazd neutronowych, które doprowadziło do olbrzymiej eksplozji zwanej kilonową. Potwierdzono wówczas, że w procesie tym powstały ciężkie pierwiastki. Istnieje jednak możliwość, że proces r ma też miejsce zaraz po połączeniu się gwiazdy neutronowej z czarną dziurą.
      Naukowcy spekulują, że gdy gwiazda neutronowa jest rozrywana przez pole grawitacyjne czarnej dziury, w przestrzeń kosmiczną zostaje wyrzucona olbrzymia ilość materiału bogatego w neutrony. Powstaje wówczas idealne środowisko do pojawienia się procesu r. Specjaliści zastrzegają jednak, że w procesie tym musi brać udział czarna dziura do dość niewielkiej masie, która dość szybko się obraca. Zbyt masywna czarna dziura bardzo szybko wchłonie materiał z gwiazdy neutronowej i niewiele trafi w przestrzeń kosmiczną.
      Chen, Vitale i Foucart jako pierwsi porównali ilość ciężkich pierwiastków, jakie powstają w wyniku obu typów procesu r. Przetestowali przy tym liczne modele, zgodnie z którymi proces r mógłby zachodzić.
      Większość symulacji wykazała, że w ciągu ostatnich 2,5 miliarda lat w wyniku łączenia się gwiazd neutronowych przestrzeń kosmiczna została wzbogacona od 2 do 100 razy większą ilością ciężkich pierwiastków niż w wyniku kolizji czarnych dziur z gwiazdami neutronowymi. W modelach, w których czarna dziura obracała się powoli, połączenia gwiazd neutronowych dostarczały 2-krotnie więcej ciężkich pierwiastków, niż połączenia czarnej dziury z gwiazdą neutronową. Z kolei tam, gdzie czarna dziura obraca się powoli i ma niską masę – poniżej 5 mas Słońca – połączenia gwiazd neutronowych odpowiadają aż za 100-krotnie więcej ciężkich pierwiastków powstających w procesie r. Do tego, by połączenia czarnych dziur z gwiazdami neutronowymi odpowiadały za znaczną część pierwiastków powstających w procesie r konieczne jest istnienie czarnej dziury o małej masie i szybkim obrocie. Jednak dane, którymi obecnie dysponujemy, raczej wykluczają istnienia takich czarnych dziur.
      Autorzy badań już planują poprawienie swoich obliczeń dzięki danym z udoskonalanych LIGO i Virgo oraz z nowego japońskiego wykrywacza KAGRA. Wszystkie trzy urządzenia powinny ponownie ruszyć w przyszłym roku. Dokładniejsze obliczenia tempa wytwarzania ciężkich pierwiastków we wszechświecie przydadzą się m.in. do lepszego określenia wieku odległych galaktyk.
      Ze szczegółami badań można zapoznać się na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zjawiska istotne dla czarnych dziur, eksplozji supernowych i innych ekstremalnych wydarzeń kosmicznych mogą zostać odtworzone na Ziemi, twierdzą naukowcy z Pinceton University, SLAC National Accelerator Laboratory oraz Princeton Plasma Physics Laboratory. Dowodzą oni, że współczesna technologia pozwala na uzyskanie procesów kaskadowych opisywanych przez elektrodynamikę kwantową (QED cascades). Procesy takie leżą u podstaw eksplozji supernowych czy szybkich rozbłysków radiowych, w czasie których w ciągu milisekund emitowane jest tyle energii, ile Słońce emituje w ciągu kilku dni.
      Kenan Qu, Sebastian Meuren i Nahaniel J. Fisch poinfornowali na łamach Physical Review Letters, o uzyskaniu pierwszego teoretycznego dowodu, że interakcja laboratoryjnego lasera z gęstym strumieniem elektronów doprowadzi do pojawienia się kaskad. Wykazaliśmy, że to, o czym sądzono, iż jest niemożliwe, w rzeczywistości jest możliwe. To zaś pokazuje, że zjawisko, którego dotychczas nie mogliśmy bezpośrednio obserwować, można uzyskać za pomocą najnowocześniejszych laserów i urządzeń do generowania strumienia elektronów, mówi główny autor artykułu, Kenan Qu.
      Zderzenie silnego impulsu laserowego ze strumieniem elektronów o wysokiej energii prowadzi do powstania gęstej chmury par elektron-pozyton, które zaczynają wchodzić w interakcje. To zaś powoduje kolektywne zachowanie się plazmy, co z kolei wpływa na to, jak pary te wspólnie reagują na pola elektryczna lub magnetyczne.
      Plazma, zjonizowana materia przypominająca gaz, zawiera swobodne cząstki – jony i elektrony – i stanowi około 99% widzialnego wszechświata. Napędza ona reakcje w gwiazdach, a zachodzące w niej procesy są silnie zależne od pól elektromagnetycznych.
      "Poszukiwaliśmy sposobów, na odtworzenie warunków, w jakich powstaną pary elektron-pozyton o gęstości na tyle dużej, by doszło do kolektywnego zachowania się plazmy", mówi Qu. Już znacznie wcześniej wiedziano, że wystarczająco silne lasery, pola magnetyczne lub elektryczne mogą doprowadzić do pojawienia się wspomnianych procesów kaskadowych. Jednak wyliczenia pokazywały, że uzyskanie tak intensywnych promieni laserowych, pól magnetycznych i elektrycznych jest poza naszymi możliwościami.
      Okazuje się, że połączenie współczesnych technologii laserowych z relatywistycznymi strumieniami elektronów wystarczy, by zaobserwować takie zjawisko, mówi profesor Nat Fisch. Kluczem jest tutaj wykorzystanie lasera, który spowolni pary elektron-pozyton tak, by ich masa spadła, przez co zwiększy się ich wpływ na częstotliwość plazmy i wzmocni kolektywne zachowania plazmy. Wykorzystanie już dostępnych technologii jest tańsze, niż próba zbudowania lasera o olbrzymiej intensywności.
      Teraz autorzy badań chcą sprawdzić swoją przewidywania w SLAC National Accelerator Laboratory. Właśnie trwają tam prace nad laserem o umiarkowanej intensywności, a źródło elektronów już się tam znajduje. Jeśli dowiedziemy prawdziwości naszych obliczeń, zaoszczędzimy miliardy dolarów, dodaje Qu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...