Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W prestiżowym piśmie Preceedings of the National Academy of Sciences ukazał się artykuł, w którym dwóch matematyków - Blake Temple z Uniwersytetu Kalifornijskiego w Davies i Joel Smoller z University of Michigan - dowodzi, że ciemna energia nie istnieje. Jeśli mają rację, ich teoria może całkowicie zmienić postrzeganie budowy wszechświata.

Temple i Smoller postulują, że wszechświat nie rozszerza się coraz szybciej napędzany przez tajemniczą ciemną energię. Ich zdaniem rozszerzające się fale wędrujące przez czasoprzestrzeń powodują, że wydaje się nam, iż odległe galaktyki coraz szybciej uciekają. Istnienie tych fal, zainicjowanych przez Wielki Wybuch, wyjaśnia, dlaczego obiekty wydają się znajdować dalej, niż wynika to z Modelu Standardowego.

Matematycy przedstawili serię wyliczeń, w których pokazują, jak teoria o fali pasuje do ogólnej teorii względności i jak powoduje ona względne przyspieszenie.

Na tym etapie myślimy, że to bardzo ciekawa teoria. Naszym zdaniem nie ma żadnego przyspieszenia. Galaktyki są tam, gdzie być powinny, ale w wyniku działania fali widzimy je w nieco innej pozycji niż przypuszczaliśmy, że się znajdują - mówi Temple.

Swoją teorię porównuje do wrzucenia kamienia do wody. Miejsce upadku kamienia to Wielki Wybuch. Od niego rozchodzą się koncentrycznie fale. Gdy formują się galaktyki, to znajdują się one w nieco innym miejscu, niż gdyby fali nie było. A więc znajdują się nie tam, gdzie możemy się ich spodziewać.

Trzeba jednak wziąć pod uwagę fakt, że z Ziemi wydaje się, iż obiekty uciekają równomiernie we wszystkich kierunkach. Teoria fali zmusza nas więc do przyjęcia jednego z dwóch założeń: albo Droga Mleczna znajduje się w pobliżu centrum wszechświata, niedaleko miejsca, gdzie doszło do Wielkiego Wybuchu, albo też że znajdujemy się znajdujemy się w centrum jakiejś mniejszej fali, a on wpływa na nasze postrzeganie innych obiektów.

Z całym dowodem można zapoznać się na stronie domowej Blake'a Temple'a [PDF].

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Może nie "dowodzi", tylko co najwyżej sugeruje możliwość innego wyjaśnienia aktualnych modeli kosmologicznych.

Ogólnie to rzeczywiście uważam że największą trudnością fizyki jest odróżnianie skutku od przyczyny, jednak pewna 'energia próżni' jest jak dla mnie całkowicie naturalna ... owszem pytanie czy wystarczająca żeby wytłumaczyć obserwacje?

Mianowicie wiemy już że próżnia to nie po prostu pustka, tylko w lepszym przybliżeniu pewne pole między innymi zdolne do przenoszenia 'fal' różnych oddziaływań - czyli posiada olbrzymią ilość stopni swobody. Między nimi występuje pewne niewielkie oddziaływanie, więc według termodynamiki ich energie po tych kilkunastu miliardach lat powinny się wyrównać. Potrafimy obserwować ich elektromagnetyczną część - mikrofalowe tło 2.725K - daje to ok. 6*10^-5 wymaganej 'ciemnej energii'. Jednak pole budujące naszą fizykę jest bardziej skomplikowane - przenosi jeszcze oddziaływanie grawitacyjne, słabe i silne - nie potrafimy jeszcze tego szumu obserwować, ale ich stopnie swobody też powinny mieć podobną temperaturę ... i nie zdziwiłbym się gdyby sumowały się do wymaganej stałej kosmologicznej ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Krótko po Wielkim Wybuchu, gdy wszechświat zaczął się rozszerzać, przypominał on gotującą się wodę i dochodziło w nim do nieznanych dotychczas przejść fazowych. Wyobraźmy sobie, że bąble pojawiały się w różnych miejscach wczesnego wszechświata. Stawały się coraz większe, zderzały się ze sobą. W końcu mieliśmy do czynienia ze złożonym układem zderzających się bąbli, które uwolniły energię i wyparowały, mówi Martin S. Sloth z Centrum Kosmologii i Fenomenologii Fizyki Cząstek Uniwersytetu Południowej Danii. Wraz z Florianem Niedermannem z Nordyckiego Instytutu Fizyki Teoretycznej (NORDITA) w Sztokholmie stworzył on hipotezę, która ma rozwiązywać problemy ze stałą Hubble'a.
      Stała Hubble'a to wartość, która mówi nam, z jaką prędkością wszechświat się rozszerza. Można ją obliczyć na podstawie analizy promieniowania tła albo na podstawie tempa oddalania się od nas gwiazd i galaktyk. Obie metody są prawidłowe, obie są przyjęte przez naukę. Problem w tym, że dają różne wyniki. A jest on na tyle poważny, że przed kilku laty odbyło się specjalne spotkanie, na którym omawiano to zagadnienie.
      W nauce powinniśmy być w stanie dojść do tych samych wyników za pomocą różnych metod. Mamy więc problem. Dlaczego nie otrzymujemy takiego samego wyniku w tym przypadku, gdy jesteśmy pewni, że obie metody są prawidłowe?, pyta Niedermann. Jeśli uważamy obie te metody za prawidłowe, a tak jest, może to nie metody są problemem. Może powinniśmy popatrzeć na sam początek, na bazę do której te metody stosujemy. Może to w niej tkwi błąd, dodaje.
      Bazą dla obu metod obliczania stałej Hubble'a jest Model Standardowy, który zakłada, że przez 380 000 lat po Wielkim Wybuchu wszechświat wypełniony był promieniowaniem i materią – zarówno normalną jak i ciemną – i to były dominujące formy energii. Promieniowanie i zwykła materia były skompresowane w ciemnej, gorącej gęstej plazmie. Dla takiego modelu otrzymujemy obecnie dwie różne wartości stałej Hubble'a.
      Sloth i Niedermann wysunęli hipotezę, że we wczesnym wszechświecie dużą rolę odgrywała nieznana forma ciemnej energii. Okazało się, że gdy przyjęli takie założenie i obliczyli dla niego stałą Hubble'a, to za pomocą obu metod uzyskali ten sam wynik. Hipotezę tę nazwali NEDE (New Early Dark Energy – Nowa Wczesna Ciemna Energia).
      Naukowcy postulują, że ta nowa ciemna energia przeszła zmianę fazy na krótko przed zmianą wszechświata z gęstej gorącej plazmy w stan, w jakim obecnie się znajduje. Ciemna energia wczesnego wszechświata przeszła zmianę fazy tak, jak woda może zmienić fazę pomiędzy stanem stały, ciekłym i gazowym. Podczas tej przemiany fazowej bąble energii zderzały się ze sobą, uwalniając energię, wyjaśnia Niedermann. Proces ten mógł trwać bardzo krótko, tylko tyle czasu ile trzeba dwóm cząstką by się zderzyły, a mógł trwać też 300 000 lat. Tego nie wiemy, ale próbujemy się dowiedzieć, dodaje Sloth.
      Obaj naukowcy zdają sobie sprawę z faktu, że sugerują, iż podstawy naszego rozumienia wszechświata są wadliwe i że zaproponowali istnienie nieznanych dotychczas cząstek lub sił. Zauważają jednak, że w ten sposób można wyjaśnić problemy ze stałą Hubble'a. Jeśli ufamy obserwacjom i obliczeniom, to musimy zaakceptować fakt, iż nasz obecny model wszechświata nie wyjaśnia danych. Musimy więc poprawić ten model. Ale nie poprzez jego odrzucenie i odrzucenie wszystkiego, w czym dotychczas się sprawdził, ale przez dopracowanie go i uszczegółowienie, stwierdzają. A – jak mówią – dodanie do obecnego Modelu Standardowego hipotezy o zmianie fazy ciemnej energii we wczesnym wszechświecie pozwala na rozwiązanie problemów z obliczeniem tempa rozszerzania się wszechświata.
      Warto w tym miejscu przypomnieć, że przed dwoma laty grupa fizyków wpadła na ślady nieznanego rodzaju ciemnej energii, która mogła istnieć w ciągu pierwszych 300 000 lat po Wielkim Wybuchu. Jeszcze inną próbą rozwiązania problemu jest przyjęcie, że wszechświat nie jest homogeniczny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dwie grupy naukowe twierdzą, że wpadły na ślad nieznanego rodzaju ciemnej energii, która mogła istnieć w ciągu pierwszych 300 000 lat po Wielkim Wybuchu, przed okresem rekombinacji, w którym protony i elektrony utworzyły atomy. Obecność tej ciemnej energii – o ile w ogóle spostrzeżenia się potwierdzą – może wyjaśniać, dlaczego różne metody obliczania tempa rozszerzania się wszechświata dają różne wyniki.
      Tempo rozszerzania się wszechświata, stała Hubble'a, zostało wyliczone 100 lat temu. Problem w tym, że wyliczenia stałej Hubble'a w oparciu o badania mikrofalowego promieniowania tła (CMB), czyli promieniowania wyemitowanego na wczesnych etapach rozwoju wszechświata, dają inne wyniki, niż liczone w oparciu o supernowe. Innymi słowy, obliczenia oparte na najstarszych danych nie zgadzają się z tymi, opartymi na danych nowszych. Istnienie w przeszłości nieznanej formy ciemnej energii być może pozwoliłoby wyjaśnić te różnice.
      Dotychczas powstały liczne hipotezy, próbujące wyjaśnić te różnice. Przed dwoma laty Marc Kamionkowski i jego koledzy z Johns Hopkins University, zaproponowali hipotezę o „wczesnej ciemnej energii”, która miała wypełniać wszechświat przez kilkaset tysięcy lat po Wielkim Wybuchu. Nie jest to do końca przekonujące, ale to jedyny model, który może działać, mówi Kamionkowski.
      Ta wczesna ciemna energia nie byłaby w stanie napędzać przyspieszenia wszechświata w sposób, jaki robi to „normalna” ciemna energia, ale spowodowałaby ona, że plazma we wczesnym wszechświecie ochładzałaby się szybciej. A to z kolei wpłynęłoby na interpretację wyników pomiarów CMB, szczególnie zaś wieku wszechświata i tempa jego rozszerzania się.
      Informacje, sugerujące istnienie energii postulowanej przez zespół Kamionkowskiego, zauważono w danych dotyczących polaryzacji CMB z Atacama Cosmology Telscope (ACT) z lat 2013–2016. Autorami jednego z artykułów – oba zostały opublikowane na serwerze arXiv – są uczeni pracujący przy ACT, a autorami drugiego niezależna grupa naukowa.
      Sami autorzy badań, zwracają uwagę, że jest jeszcze zdecydowanie zbyt wcześnie, by ogłaszać odkrycie. Zebrane dane nie pozwalają jednoznacznie stwierdzić, że mamy do czynienia z nieznanym rodzajem ciemnej energii. Jednak, jak zauważają, kolejne obserwacje za pomocą ACT oraz South Pole Telescope mogą już wkrótce dostarczyć kolejnych danych. Jeśli to prawda, jeśli rzeczywiście we wczesnym wszechświecie istniała jakaś inna forma ciemnej energii, to powinniśmy zobaczyć silny sygnał, mówi Colin Hill, kosmolog z Columbia University, który jest współautorem badań zespołu ACT.
      ACT i South Pole Telescope to urządzenia, których celem jest mapowanie CMB. Autorzy obu artykułów z arXiv twierdzą, że dane z ACT dotyczące polaryzacji mikrofalowego promieniowania tła, bardziej pasują do modelu zawierającego wczesną ciemną energię, niż do modelu standardowego. Jeśli byłyby prawdziwe, to by oznaczało, że wszechświat liczy sobie 12,4 miliarda lat, a nie 13,8 miliarda lat, jak się obecnie przyjmuje. Ponadto tempo rozszerzania się wszechświata liczone z mikrofalowego promieniowania tła byłoby o 5% większe, czyli wynosiłoby ok. 71 km/s/Mpc (kilometrów na sekundę na megaparsek), a to już mieści się w zakresach wartości liczonych z supernowych.
      Uczeni bardzo ostrożnie podchodzą do swoich spostrzeżeń. W tej chwili sprawdzają, czy również w zarejestrowanych przez ACT danych dotyczących temperatury CMB zauważą preferencje odnośnie hipotezy o wczesnej ciemnej energii. Niezwykle ważne dla zweryfikowanie tych informacji będzie sprawdzenie danych z ACT za pomocą danych z South Pole Telescope.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Kosmologowie od dawna mają problem z jedną z podstawowych wartości opisujących wszechświat – tempem jego rozszerzania się. Różne pomiary przynoszą bowiem różne wartości. Teraz coraz wyraźniej widać kolejne pęknięcie w standardowym modelu kosmologicznym. Niedawno grupa naukowców wykazała, że wszechświat jest niespodziewanie rzadki. Materia nie gromadzi się w nim tak, jak się spodziewano. Podobne sygnały pojawiały się już wcześniej, tym razem jednak mamy do czynienia z najbardziej szczegółową analizą danych zbieranych przez 7 lat.
      Dane są na tyle wiarygodne, że niektórzy specjaliści zastanawiają się, czy nie wpadliśmy na trop czegoś nieznanego. Mamy już ciemną materię i ciemną energię. Mam nadzieję, że do wyjaśnień nie potrzebujemy kolejnej ciemnej rzeczy, mówi Michael Hudson, kosmolog z University of Waterloo, który nie był zaangażowany w najnowsze badania.
      Autorzy najnowszych badań, skupieni wokół inicjatywy Kilo-Degree Survey (KiDS), obserwowali około 31 milionów galaktyk, położonych w promieniu do 10 miliardów lat świetlnych od Ziemi. Na podstawie tych obserwacji wyliczyli średni rozkład niewidocznego gazu i ciemnej materii we wszechświecie. Odkryli, że jest jej niemal o 10% mniej niż przewiduje jeden z najpowszechniej uznawanych modeli kosmologicznych, Model Lambda-CDM.
      W ciągu ostatnich ośmiu lat pojawiło się kilkanaście badań, których autorzy – korzystając z różnych technik – dochodzili do wniosku, że materia nie gromadzi się zgodnie z przewidywaniami. Rozpatrywane osobno badania te nie mają większego znaczenia. Rozważane w nich kwestie są tak trudne do zbadania, że łato mogło dojść do pomyłek. Jednak coraz częściej pojawiają się głosy, że to nie statystycznie dopuszczalne niedoskonałości w badaniach, ale reguła. Gdy w wielu różnych zestawach danych zaczynasz dostrzegać tę samą rzecz, musisz wziąć pod uwagę, że coś w tym jest, stwierdza Hudson.
      Naukowcy muszą teraz pogodzić dwie sprzeczne ze sobą rzeczy. Z jednej strony, by określić tempo rozszerzania się wszechświata – w wiele wskazuje na to, że jest ono większe, niż sądzono – muszą znaleźć dodatkowy element, który go napędza. Z drugiej jednak strony skoro materia nie gromadzi się razem tak, jak przypuszczano, do siły na nią oddziałujące są słabsze, a nie mocniejsze, jak wymagałoby tego wyjaśnienie tempa rozszerzania się wszechświata. Julien Lesgourgues, kosmolog-teoretyk z Uniwersytetu Aachen mówi, że znalezienie satysfakcjonującego wyjaśnienia obu tych zjawisk będzie koszmarem.
      Podejmowane są pewne próby wyjaśnień wspomnianych zjawisk. Przyspieszenie ekspansji wszechświata można by wyjaśnić „ciemnym promieniowaniem”. Jednak trzeba by je zbilansować dodatkową materią, która by się grupowała. Aby osiągnąć obserwowane mniejsze grupowanie się, trzeba by wprowadzić dodatkowy element, który to uniemożliwia. Tutaj pojawia się próba wyjaśnienia w postaci zamiany ciemnej materii – która powoduje grupowanie się materii – w ciemną energię, powodującą jej oddalanie się od siebie. Można też przyjąć, że Ziemia znajduje się w jakimś wielkim bąblu rozrzedzonej materii, co zaburza nasze obserwacje. Lub też uznać, że szybkie tempo rozszerzania się wszechświata i mniejsze grupowanie się materii nie są ze sobą powiązane. Nie widzę obecnie żadnego satysfakcjonującego wyjaśnienia. Jeśli jednak byłbym teoretykiem byłbym bardzo podekscytowany, mówi Hudson.
      Wciąż też istnieje prawdopodobieństwo, że oba omawiane zjawiska lub przynajmniej jedno z nich, w rzeczywistości nie mają miejsca. Jednak by to stwierdzić, trzeba poczekać na inne dane. KiDS to jeden z trzech dużych projektów badawczych. Inne to międzynarodowy Dark Energy Survey prowadzony w Chile i japoński Hyper Suprime-Cam. W ramach każdego z nich skanowany jest inny fragment nieboskłonu na inną głębokość. W czasie ostatniej kampanii Dark Energy Survey przeskanowano obszar 5-krotnie większy niż badał KiDS. Wyniki powinny ukazać się w ciągu najbliższych miesięcy. Wszyscy na nie czekają. To kolejna wielka rzecz w kosmologii, mówi Daniel Scolnic, kosmolog z Duke University, który specjalizuje się w badaniu tempa rozszerzania się wszechświata.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
      Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
      Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
      Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
      Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
      Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
      Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zdaniem międzynarodowego zespołu naukowego, wszechświat jest pełen planet zawierających wodę. Uczeni uważają, że jest ona ważnym składnikiem egzoplanet o rozmiarach od 2 do 4 wielkości Ziemi.
      To była dla nas wielka niespodzianka, gdy zdaliśmy sobie sprawę, że musi być tak dużo wodnych światów, mówi główny autor badań, doktor Li Zen z Uniwersytetu Harvarda. Z badań, przeprowadzonych za pomocą teleskopów Keplera i Gaia wynika bowiem, że wiele ze znanych nam egzoplanet zawiera do 50% wody. Dla porównania, na Ziemi woda stanowi zaledwie 0,02% masy planety.
      Wiele z potwierdzonych dotychczas około 4000 egzoplanet można zaliczyć do jednej z dwóch kategorii: takich, których średnica wynosi około 1,5 średnicy Ziemi oraz takich o średnicy około 2,5 średnicy naszej planety. Po przeanalizowaniu średnic i mas badanych egzoplanet uczeni stworzyli model ich budowy.
      Sprawdziliśmy, jak masa ma się do średnicy i stworzyliśmy model wyjaśniający tę zależność, mówi Li Zeng. Wynika z niego, ze planety o średnicy do 1,5 średnicy Ziemi to zwykle światy skaliste o masie 5-krotnie większej niż masa naszej planety. Z kolei te o średnicy 2,5-krotnie większej od średnicy Ziemi mają masę 10-krotnie większą od naszej planety i są światami wodnymi.
      Tam występuje woda, ale nie jest ona tak powszechnie dostępna jak na Ziemi. Temperatury powierzchni tych planet wynoszą 200–500 stopni Celsjusza, są otoczone atmosferą zdominowaną przez parę wodną z płynną warstwą poniżej. W głębi planety woda ta, pod wpływem wysokiego ciśnienia, została prawdopodobnie zmieniona w lód. Jeszcze niżej jest skaliste jądro planety. Piękno naszego modelu polega na tym, że wyjaśnia nam, jak skład planety ma się do znanych nam danych na jej temat, mówi Li Zeng.
      Nasze dane wskazują, że około 35% egzoplanet większych od Ziemi powinno być bogate w wodę. Te wodne światy formowały się w podobny sposób, jak jądra dużych planet Układu Słonecznego. Niedawno rozpoczęta misja TESS pozwoli na znalezienie większej ich liczby, a w przyszłości teleskop Jamesa Webba pozwoli na zbadanie ich atmosfery. To ekscytujący okres dla badaczy egzoplanet, stwierdza uczony.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...