Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Po co roślinom ukryte kryształy? Występują w wielu rodzinach, ale długo nie można było rozstrzygnąć, czy mają odstraszać roślinożerców, stanowić magazyn wapnia, czy też dodatkowe rusztowanie dla różnych tkanek. By ostatecznie znaleźć odpowiedź na to pytanie, dr Gary Coté badał difenbachie, stanowiące (trującą) ozdobę wielu domów.

Botanik wybrał do eksperymentu konkretny gatunek Dieffenbachia seguine. W roślinach występują 3 rodzaje kryształów: druzy mineralne, inaczej szczotki (skupiska kryształów wokół nieregularnej, często kanciastokształtnej pustki), rafidy (igły zebrane w pęczki lub szeregi) oraz pryzmaty (jedyńce). Okazało się, że wszystkie one pojawiają się u difenbachii. Coté zauważył, że każda tkanka, a niekiedy nawet różne części tego samego organu mają swoje specyficzne kryształy. Bez względu na kształt, wszystkie zawierają szczawian wapnia, budulec kamieni nerkowych.

Botanik jest przekonany, że kryształy rzeczywiście mają przede wszystkim odstraszać roślinożerców, ale poszczególne formy pełnią inne funkcje. Druzy szlifują wnętrze jamy ustnej, dając wrażenie żucia piasku. Rafidy występują najczęściej w chętnie skubanych liściach. Po ugryzieniu zostają wyduszone z tkanki, przekształcając się w kłujące delikatny język igły. Dla odmiany wiązki rafidów z łodygi stanowią rodzaj rusztowania, a pryzmaty spotykane wyłącznie w pyłku odpowiadają zapewne za jego rozpraszanie bądź kiełkowanie.

Share this post


Link to post
Share on other sites
W roślinach występują 3 rodzaje kryształów: druzy mineralne, inaczej szczotki (skupiska kryształów wokół nieregularnej, często kanciastokształtnej pustki), rafidy (igły zebrane w pęczki lub szeregi) oraz pryzmaty (jedyńce). 

A kolce i parzydełka roślinie to do czego służą??

Share this post


Link to post
Share on other sites

Nie wszystkie rośliny je mają, więc muszą sobie radzić w ten sposób.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Defekty w kryształach, zwłaszcza dyslokacje krawędziowe o charakterze długich uskoków, wpływają na strukturę całego materiału i modyfikują jego podstawowe właściwości, redukując możliwości zastosowań. Fizycy z Krakowa i Warszawy pokazali na przykładzie kryształu węglika krzemu, że nawet tak wymagające obliczeniowo defekty można z powodzeniem badać z dokładnością atomową za pomocą umiejętnie skonstruowanego modelu.
      Matematyka kocha perfekcję. Niestety, perfekcja nie kocha fizycznej rzeczywistości. Teoretycy zajmujący się modelowaniem kryształów od dawna próbowali uwzględniać defekty występujące w prawdziwych strukturach krystalicznych i przewidywać ich wpływ na właściwości fizyczne materiałów. Modele, bazujące na wynikach różnych eksperymentów, opisywały zmiany podstawowych własności materiału bez wyjaśniania rzeczywistych przyczyn i skutków zaistniałych zjawisk. Dopiero nowy model węglika krzemu (SiC), zbudowany przez fizyków z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, pozwolił zademonstrować, że już dziś można "z pierwszych zasad" modelować kryształy nawet z tak złożonymi defektami jak dyslokacje krawędziowe i wyjaśniać ich cechy procesami zachodzącymi w skali atomowej. Spektakularny rezultat, omawiany podczas niedawnej konferencji Multis 2019 w Krakowie i opublikowany w czasopiśmie Journal of Materials Science, krakowscy fizycy osiągnęli we współpracy z ulokowanymi w Warszawie Instytutem Podstawowych Problemów Techniki PAN i Instytutem Wysokich Ciśnień PAN.
      Staraliśmy się poznać na poziomie atomowym mechanizmy odpowiedzialne za obniżanie się prądu przebicia w kryształach węglika krzemu. Nasze obliczenia, wywodzące się z "pierwszych zasad", prowadzą ku jakościowemu zrozumieniu problemu i przyczyniają się do wyjaśnienia szczegółów tego zjawiska - mówi dr hab. Jan Łażewski, prof. IFJ PAN.
      Obliczenia "z pierwszych zasad" mają długą historię związaną z Nagrodą Nobla dla Waltera Kohna i Johna Pople'a w 1998 roku (do symulacji defektów w kryształach wprowadzono je jednak niedawno). Pojęciem tym określa się obliczenia przeprowadzane z użyciem równań mechaniki kwantowej, wsparte jedynie wiedzą o budowie atomu i symetrii kryształów. W podejściu tym nie ma żadnych bezpośrednich informacji z eksperymentów, co oznacza, że z jego pomocą można analizować również takie materiały, których jeszcze nikt nigdy nie badał, a nawet nie zsyntetyzował. Ze względu na dużą komplikację zagadnienia, do tej pory obliczenia z pierwszych zasad stosowano jedynie do zaburzeń punktowych, związanych z wakansami (brakami atomów, czyli dziurami w strukturze krystalicznej) lub domieszkami wprowadzanymi do kryształu.
      Krakowscy badacze nie bez przyczyny zajęli się węglikiem krzemu. Właściwości tego półprzewodnika są tak interesujące, że kiedyś uważano go nawet za następcę krzemu. Jego przerwa energetyczna (bariera, którą musi pokonać ładunek żeby przedostać się z pasma walencyjnego do pasma przewodnictwa i brać udział w przewodzeniu prądu) jest niemal trzykrotnie większa niż w krzemie, dopuszczalna gęstość prądu przewodzenia – dwukrotnie, zdolność do odprowadzania ciepła – ponadtrzykrotnie, a graniczna częstotliwość pracy kryształu – aż sześciokrotnie. Mało tego, układy wykonane z węglika krzemu mogą pracować w temperaturach do 650 stopni Celsjusza, podczas gdy układy krzemowe zaczynają mieć problemy już przy 120 stopniach. SiC ma także wysoką temperaturę topnienia, jest twardy, odporny na kwasy i promieniowanie. Do jego wad należy przede wszystkim cena: o ile dwucalowe płytki krzemowe kosztują zaledwie kilka dolarów, wartość podobnych płytek z węglika krzemu trzeba liczyć w tysiącach. Kryształy węglika krzemu o niskiej jakości to popularny materiał ścierny, stosowany również w kamizelkach kuloodpornych i w tarczach hamulcowych najdroższych samochodów świata, takich jak Lamborghini czy Bugatti. Wysokiej jakości kryształy służą do wyrobu zwierciadeł teleskopów i elementów wysokonapięciowych urządzeń o dużej odporności na temperaturę.
      Na poziomie atomowym kryształy węglika krzemu są zbudowane z wielu ułożonych jedna na drugiej płaskich warstw. Każda warstwa przypomina plaster miodu: składa się z sześciokątnych komórek, w których narożnikach są ulokowane pionowo cząsteczki węglika krzemu. Każde dwie sąsiednie warstwy można połączyć na trzy sposoby. Wielowarstwowe "kanapki" o różnych wzajemnych ułożeniach tworzą tzw. modyfikacje politypowe, których w przypadku węglika krzemu jest ponad 250. Grupa z IFJ PAN zajmowała się politypem oznaczonym jako 4H-SiC.
      Przy modelowaniu tego typu struktur jednym z podstawowych problemów jest złożoność obliczeniowa. Model kryształu czystego, pozbawionego domieszek czy dyslokacji, charakteryzuje się dużą symetrią i można go przeliczyć nawet w kilka minut. Żeby zrobić rachunek dla materiału z dyslokacją, potrzebujemy już całych miesięcy pracy komputera o dużej mocy obliczeniowej - podkreśla dr hab. Paweł Jochym, prof. IFJ PAN.
      Kłopoty z dyslokacjami krawędziowymi wynikają ze skali ich wpływu na strukturę krystaliczną materiału. Obrazowo można je porównać do problemów z zamaskowaniem braku części jednego rzędu płytek w posadzce. Wyrwę można "zabliźnić", przesuwając płytki sąsiadujących rzędów, ale defekt pozostanie zawsze widoczny. Dyslokacje krawędziowe, wynikające z braku całych ciągów lub połaci atomów/cząsteczek w poszczególnych warstwach kryształu, działają podobnie, wpływając na położenia atomów i cząsteczek w wielu sąsiednich warstwach. A ponieważ dyslokacje mogą się rozciągać na znaczne odległości, w praktyce wywołane nimi zaburzenia obejmują cały kryształ.
      Najciekawsze zjawiska zachodzą w rdzeniu dyslokacji, a więc w bezpośrednim sąsiedztwie krawędzi uszkodzonej warstwy sieci krystalicznej. Aby wyeliminować dalekozasięgowe efekty, wywołane pojedynczą dyslokacją, a tym samym znacznie ograniczyć liczbę rozważanych atomów, zastosowano trik: wprowadzono drugą dyslokację, o przeciwnym działaniu. W ten sposób skompensowano oddziaływanie pierwszej dyslokacji na większych odległościach.
      Model kryształu SiC składał się z około 400 atomów. Przeprowadzone symulacje wykazały, że w warstwach kryształów, wzdłuż krawędzi rdzenia defektu, pojawiają się "tunele" w formie kanałów o zmniejszonej gęstości ładunku. Obniżają one lokalnie barierę potencjału i powodują, że ładunki elektryczne mogą "wyciekać" z pasma walencyjnego. Dodatkowo w przerwie wzbronionej, która w izolatorze gwarantuje brak przewodzenia prądu elektrycznego, pojawiają się stany redukujące jej szerokość i skuteczność w ograniczaniu przepływu ładunku. Wykazano, że stany te pochodzą od atomów ulokowanych w rdzeniu dyslokacji.
      Sytuację można porównać do głębokiego, stromego wąwozu, który próbuje pokonać wiewiórka. Jeśli dno wąwozu jest puste, wiewiórka nie przedostanie się na drugą stronę. Jeśli jednak na dnie rośnie pewna liczba odpowiednio wysokich drzew, wiewiórka może po ich wierzchołkach przeskoczyć na drugą stronę wąwozu. W modelowanym przez nas krysztale wiewiórką są ładunki elektryczne, pasmo walencyjne to jedna krawędź wąwozu, pasmo przewodnictwa – druga, a drzewami są wspomniane stany związane z atomami rdzenia dyslokacji - mówi prof. Łażewski.
      Teraz, gdy mechanizmy odpowiedzialne za obniżanie progu bariery energetycznej stały się znane na poziomie atomowym, pojawiło się ogromne pole do popisu dla eksperymentatorów. Zaproponowany mechanizm trzeba będzie zweryfikować, by później móc go użyć do ograniczenia negatywnego wpływu badanych defektów. Na szczęście istnieją już odpowiednie ku temu możliwości techniczne.
      Przyszłość zweryfikuje, czy nasze pomysły zostaną potwierdzone w całości. Jesteśmy jednak spokojni o losy naszego modelu i zaprezentowanego podejścia do symulowania dyslokacji krawędziowych. Już teraz wiemy, że model "z pierwszych zasad" sprawdził się w konfrontacji z niektórymi danymi eksperymentalnymi - podsumowuje prof. Jochym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania skamieniałych pyłków pozwoliły na stwierdzenie, jakie rośliny uprawiano w ogrodach pałacowych w pobliżu Jerozolimy. Od kilkudziesięciu lat na szczycie wzgórza Ramat Rahel górującego nad współczesną Jerozolimą prowadzone są prace archeologiczne. Na wzgórzu znajdował się jedyny znany nam pałac Królestwa Judy. Przy pałacu były też ogrody, a odkryty skomplikowany system irygacyjny pozwalał wyobrazić sobie, jaki był ich układ. Teraz wiemy również, jak wyglądały.
      Profesor Oded Lipschits oraz doktorzy Yuval Gadot oraz Dafna Langgut zbadali skamieniałe pyłki roślin i stwierdzili, że przy pałacu uprawiano nie tylko lokalne figi czy winorośl. Znajdowały się tam również egzotyczne cytrony czy orzechy włoskie. Cytron, który przywędrował z Indii przez Persję pojawia się po raz pierwszy właśnie w we wspomnianych ogrodach.
      Obecny w ogrodzie system irygacyjny to jedno z najbardziej imponujących odkryć. W pobliżu nie ma źródła wody. System pozwalał na efektywne zbieranie deszczówki i rozprowadzanie jej po ogrodzie. W jego skład wchodziły oczka wodne, podziemne kanały, tunele i rynny.
      To właśnie system irygacyjny naprowadził naukowców na trop pyłków. Próby uzyskania pyłków z gleby spełzły na niczym, gdyż utleniły się one. Uczeni stwierdzili jednak, że jeśli kiedykolwiek prowadzono jakieś prace remontowe w czasie, gdy rośliny kwitły, to ich pyłki powinni przylepić się do mokrych materiałów budowlanych i wyschnąć razem z nimi. Okazało się to strzałem w dziesiątkę.
      System irygacyjny remontowano wielokrotnie, można było zatem datować różne warstwy wykorzystywanej zaprawy. Zwykle znajdowały się w niej pyłki typowe dla okolicy, jednak w jednej z warstw, datowanej na V-IV wiek p.n.e. odkryto niezwykłą kompozycję pyłków. Znajdowały się tam nie tylko ślady wspomnianych wcześniej roślin, ale również dowody na występowanie wierzby, topoli, lilii wodnych, mirtu, libańskiego cedru i brzozy. Eksperci spekulują, że importu roślin na tak szeroką skalę dokonywali rządzący wówczas na tamtym obszarze Persowie.
    • By KopalniaWiedzy.pl
      Wg naukowców z Uniwersytetów w Exeter i Oksfordzie, pojawienie się 470 mln lat temu pierwszych roślin wywołało reakcję łańcuchową w postaci serii zlodowaceń.
      W ordowiku (488-444 mln lat temu) klimat stopniowo się ochładzał. Miało to związek ze znacznym spadkiem poziomu atmosferycznego węgla. Najnowsze brytyjskie badanie, którego wyniki ukazały się w piśmie Nature Goscience, sugeruje, że miało to związek właśnie z pojawieniem się roślin.
      Wśród pionierów znajdowały się rośliny, które dały początek mchom. Pobierając ze skał wapń, magnez, fosfor i żelazo, doprowadzały do chemicznego wietrzenia powierzchni naszej planety. Wywierało to silny wpływ na globalny obieg węgla, a więc i na klimat. Niewykluczone, że procesy te prowadziły do masowego wymierania życia morskiego.
      Wykorzystanie jonów wapnia i żelaza ze skał krzemianowych, np. granitu, prowadziło do pobierania węgla z atmosfery i powstawania nowych skał węglanowych w oceanie (zachodziło więc uwęglanowienie, in. karbonizacja). Wskutek tego globalne temperatury spadły o ok. 5 st. Celsjusza. Poza tym wywołane przez pierwsze rośliny wietrzenie zwiększało ilość fosforu i żelaza w oceanie. Nasilało to fotosyntezę i skutkowało uwięzieniem kolejnych porcji węgla. Nic dziwnego, że temperatura znowu spadła o 2-3 stopnie.
      Akademicy prowadzili eksperymenty na współczesnym mchu Physcomitrella patens. Różne skały, z mchem na wierzchu lub bez, umieszczano w inkubatorze. Po 3 miesiącach można było określić wpływ roślin na chemiczne wietrzenie skał. Później posłużono się modelem systemu ziemskiego, który pozwolił stwierdzić, jak rośliny mogły wpływać na zmianę klimatu w ordowiku.
      Orogeneza (Taconic Orogeny) prowadziła do intensywnego wypiętrzania gór i wietrzenia wzdłuż tego, co obecnie stanowi śródatlantyckie i północno-wschodnie wybrzeże USA. W ordowiku wzrósł też wskaźnik erupcji bazaltu - dość podatnej na wietrzenie skały. Dodatkowo ruch kontynentów przez strefę konwergencji tropikalnej, gdzie opady są intensywne, także nasilał wietrzenie. Wszystko to razem mogło od środkowego ordowiku do wczesnego syluru obniżyć stężenie CO2 do ok. 12-krotności dzisiejszego poziomu (ang. present-day atmospheric level, PAL). Ponieważ do wywołania zlodowaceń tego okresu potrzeba było, jak wykazały złożone modele klimatyczne, 8 PAL, musiało zadziałać coś jeszcze. Rośliny...
      Biorąc pod uwagę ogromny wpływ roślin, prof. Liam Dolan z Uniwersytetu Oksfordzkiego twierdzi, że rośliny odgrywają centralną rolę w regulacji klimatu; robiły to kiedyś, robią teraz i będą, oczywiście, robić w przyszłości.
    • By KopalniaWiedzy.pl
      Jeśli lata nadal będą coraz cieplejsze, może zniknąć wiele roślin piętra alpejskiego, w tym szarotki. Rośliny z tego piętra są wypychane na wyżej położone obszary przez gatunki, które dobrze sobie radzą przy wyższych wskazaniach termometrów. Artykuł nt. zmian roślinności górskiej w Europie ukazał się w Nature Climate Change.
      Dr Michael Gottfried, który bierze udział w programie GLORIA (Global Observation Research Initiative in Alpine Environments), podkreśla, że "w niektórych niższych górach Europy widzimy, iż alpejskie łąki znikają, a ich miejsce w ciągu kilku następnych dekad zajmą karłowate krzewiny".
      W ramach najnowszego studium pobrano 897 próbek wegetacji z 60 szczytów ze wszystkich europejskich systemów górskich. Spisy sporządzano 2-krotnie: w 2001 i 2008 r. Spodziewaliśmy się znaleźć na większych wysokościach dużą liczbę ciepłolubnych roślin, ale nie nastawialiśmy się na tak dużą zmianę w krótkim czasie. Naukowiec opowiada, że wcześniej regionalne badania ujawniły związek między rosnącymi temperaturami lata a zmianą składu roślinności piętra alpejskiego (termofilizacją), ale teraz po raz pierwszy wykazano jego istnienie w skali kontynentu.
      Wyliczając wskaźnik termofilizacji, naukowcy mają nadzieję ułatwić porównywanie zmian o podobnym charakterze z różnych stron świata.
      Pracami specjalistów z 13 europejskich krajów kierowali naukowcy z Austriackiej Akademii Nauk i Uniwersytetu Wiedeńskiego.
      Wszyscy autorzy studium, a było ich aż 32, zastosowali tę samą metodę zbierania próbek, a po 7 latach powrócili dokładnie w to samo miejsce. Badanie wykazało, że efekt jest niezależny od wysokości (występuje zarówno tuż nad reglem górnym, jak i na poziomie turni) oraz szerokości geograficznej (odnotowano go w górach Szkocji i Krety).
      Nasze studium pokazuje, że zmiana klimatu wpływa nawet na zewnętrzne krańce biosfery. Termofilizacja strefy alpejskiej nigdy nie była bezpośrednio kontrolowana - podsumowuje Georg Grabherr.
    • By KopalniaWiedzy.pl
      Grzyby i bakterie mogą zmieniać organizację gleby (porowatość), tak by pochłaniała więcej wody i węgla. Artykuł na ten temat ukazał się właśnie w piśmie Interface.
      Gdy przyjrzymy się glebie pozbawionej organizmów żywych, struktura jest dość przypadkowa. Życie wprowadza w niej ład i porządek. Bakterie i grzyby wdrażają nieco feng shui i rearanżują cząstki gleby - opowiada prof. Iain Young z Uniwersytetu Nowej Anglii. Nic więc dziwnego, że Australijczyk uznaje glebę za najbardziej złożony biomateriał na Ziemi. Dlaczego? Powodów jest kilka. Po pierwsze, liczba organizmów w garści gleby przewyższa liczbę ludzi, którzy kiedykolwiek zamieszkiwali naszą planetę. Po drugie, życie z gleby definiuje jej funkcje i właściwości.
      Naukowcy już od jakiegoś czasu wiedzieli, że mikroorganizmy glebowe wydzielają klejopodobną substancję, która wiąże tworzące ją cząstki. Stąd przypuszczenie zespołu Younga, że mikroorganizmy poprawiają porowatość gleby, usprawniając przepływ wody oraz różnych gazów, w tym dwutlenku węgla i tlenu. Studium przebiegało 2-etapowo. Zaczęło się od modelu komputerowego, potem przyszedł czas na właściwy eksperyment.
      Do porównania porów w wyjałowionej glebie i glebie z mikroorganizmami Australijczycy wykorzystali mikrotomografię rentgenowską. Okazało się, że zwłaszcza grzyby zwiększały porowatość gleby. Porów nie tylko było więcej, stały się też bardziej uporządkowane i połączone. Strzępki grzybów pełniły funkcje stabilizujące, a bakterie wydzielały surfaktanty zmniejszające napięcie powierzchniowe. Dzięki zakrojonej na szeroką skalę współpracy roślinom łatwiej pobierało się z ziemi wodę.
      W tym roku ukazała się książka Iaina Younga i Karla Ritza pt. Architektura i biologia gleby: życie w wewnętrznej przestrzeni. Prawdziwe kompendium wiedzy dla zainteresowanych tą tematyką.
×
×
  • Create New...