Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Minóg genetycznie "przemeblowany"

Recommended Posts

Intensywna przebudowa genomu, polegająca na wyrzucaniu z niego znacznych fragmentów DNA, to nie tylko domena prostych zwierząt, takich jak nicienie - udowadniają naukowcy z Uniwersytetu Waszyngtońskiego. Z przeprowadzonych przez nich badań wynika, że podobny proces zachodzi u minogów morskich - organizmów znacznie bardziej złożonych, należących, podobnie jak ludzie, do strunowców.

Do odkrycia doszło przypadkowo podczas badań nad ewolucją systemu immunologicznego u zarodków minogów. Ku zaskoczeniu badaczy okazało się, że dochodzi w nich nie tylko do przetasowań w genomie komórek mających stać się w przyszłości elementami układu odpornościowego, lecz także w znacznych partiach materiału genetycznego innych komórek rozwijającego się embrionu.

Dalsze badania wykazały, że wycięciu ulega aż do 20% informacji genetycznej komórek. Większość usuwanych odcinków była zlokalizowana poza genami, lecz odkryto także przypadki przemodelowania samych genów. Jak zaobserwowano, efektem tych zmian było znaczne przybliżenie tzw. sekwencji regulatorowych, czyli odcinków DNA odpowiedzialnych za kontrolowanie aktywności genów, do sekwencji kodujących cząsteczki ważne dla rozwoju wzrastającego organizmu.

Dotychczas nie ustalono, jak dokładnie zachodzi opisywany proces. Wiadomo jedynie, że jest on uruchamiany po powstaniu kilku pierwszych komórek zarodkowych i zachodzi wieloetapowo w stosunkowo długim czasie. Nie prowadzi on jednak do zmiany materiału genetycznego komórek, z których w dojrzałym organizmie mają powstać komórki rozrodcze. Zapewnia to ciągłość linii rozwojowej i wysoki stopień podobieństwa pomiędzy komórkami rozrodczymi wytwarzanymi przez kolejne pokolenia minogów.

Badacze z Waszyngtonu nie wiedzą także, czemu dokładnie służy tak radykalna przebudowa genomu. Wiele wskazuje jednak na to, że zmiana położenia sekwencji regulatorowych względem genów ma za zadanie aktywację genów odpowiedzialnych za nabieranie przez poszczególne populacje komórek cech pozwalających im na funkcjonowanie we wzrastającym organizmie.

Autorzy odkrycia utrzymują, że jest to pierwsza obserwacja tak głębokich zmian w genomie strunowca. Ich zdaniem dokładne poznanie zasad rządzących tym procesem pozwoli na lepsze zrozumienie mechanizmów chroniących genom przed uszkodzeniami oraz dostarczy istotnych informacji na temat molekularnych podstaw ewolucji. 

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy stworzyli pierwsze na świecie małpy-chimery. Hex, Roku i Chimero są ponoć zdrowe i normalnie zbudowane, a ich ciała składają się z komórek pochodzących z 6 różnych genomów. Autorzy raportu z pisma Cell podkreślają, że udało im się poczynić olbrzymie postępy, ponieważ dotąd chimerami były głównie myszy.
      Shoukhrat Mitalipov z Oregon Health & Science University (OHSU) zebrał w jednym miejscu komórki pochodzące z kilku embrionów rezusów i zaimplantował je samicom. Kluczem do sukcesu było zmieszanie komórek na bardzo wczesnym etapie rozwoju (z 2-4-komórkowych blastocyst), bo są one totipotencjalne, tzn. mogą się różnicować w każdy typ komórkowy organizmu.
      Komórki nigdy się nie spajają, ale pozostają w pobliżu i współpracują, by utworzyć tkanki oraz narządy. Stwarza to niemal nieograniczone możliwości naukowe - podkreśla Mitalipov.
      Pierwsze próby amerykańskiego zespołu z wszczepianiem do embrionów małp hodowlanych zarodkowych komórek macierzystych, a więc zabieg wykorzystywany w przypadku myszy, zakończyły się niepowodzeniem. Uzyskiwano bowiem organizmy, w których występowały wyłącznie komórki zarodka macierzystego.
      Porażka nie zniechęciła biologów, dlatego zamiast korzystać z zamrożonych komórek, zdecydowali się na pobieranie ich ze środka masy embrionu i wstrzykiwanie bezpośrednio do drugiego zarodka. W rezultacie nie uzyskano pojedynczej chimery, ale bliźnięta. Kiedy Amerykanie wpadli wreszcie na trop skuteczniej metody, pobierali pojedyncze komórki blastocysty, a następnie mieszali komórki pochodzące od 3-6 dawców, uzyskując w ten sposób 29 nowych blastocyst. Wybrali 14 najsilniejszych i wszczepili je 5 surogatkom. U wszystkich implantacja się powiodła. U 3 samic ciążę zakończono przed terminem i badano płody-chimery, później w wyniku cesarskiego cięcia urodziły się bliźnięta Roku i Hex oraz "samotny" Chimero. Wszystkie matki odrzuciły dzieci. Naukowcy spekulują, że powodem był nienaturalny dla nich sposób urodzenia młodych. Na razie nie wiadomo, czy Roku, Xex i Chimero mogą mieć dzieci.
      Akademicy z OHSU sugerują, że embrionalne komórki macierzyste naczelnych, które są niekiedy w laboratorium od przeszło 20 lat, nie mają tych samych możliwości, co komórki pobrane z żywych embrionów. Musimy wrócić do podstaw i badać nie tylko hodowle embrionalnych komórek macierzystych, ale także komórki macierzyste w embrionach. Nie możemy modelować wszystkiego na myszach. Jeśli chcemy przejść z terapiami z komórek macierzystych z laboratoriów do klinik i od myszy do ludzi, musimy zrozumieć, co komórki naczelnych mogą, a czego nie.
    • By KopalniaWiedzy.pl
      Otyłe samce myszy mają potomstwo z zaburzeniami metabolicznymi, ponieważ wysokotłuszczowa dieta wywołuje zmiany epigenetyczne w plemnikach. Wcześniej sądzono, że tego typu zjawiska nie mają wpływu na młode, bo przed i po zapłodnieniu dochodzi do "przepakowania" zawartości jądra komórkowego.
      Maria Ohlsson Teague i Michelle Lane z Uniwersytetu w Adelajdzie w Australii wykazały, że myszy, którym podawano niezdrową karmę, miały potomstwo podatne na insulinooporność. Oznacza to, że w pewnych regionach plemników zmiany epigenetyczne najwyraźniej się utrzymują.
      W ramach pogłębionych badań zidentyfikowano 21 miRNA (jednoniciowych cząsteczek RNA regulujących włączanie i wyłączanie genów), których ekspresja była inna w plemnikach gryzoni jedzących wysokotłuszczową i zdrową karmę. Panie posłużyły się bazą danych znanych miRNA i dzięki temu opisały możliwy wpływ zaobserwowanych zmian. Na samym początku uplasowały się rozwój embrionu i plemników oraz zaburzenia metaboliczne.
      Teague uważa, że duża ilość tłuszczu wokół jąder zmienia warunki i sprzyja zmianom epigenetycznym.
    • By KopalniaWiedzy.pl
      Wystawienie komórek jajowych na wysokie stężenia nasyconych kwasów tłuszczowych, jak ma to miejsce w jajnikach kobiet otyłych i cierpiących na cukrzycę typu 2., upośledza rozwój zarodka (PLoS ONE).
      Naukowcy z Antwerpii, Hull i Madrytu stwierdzili, że u krów embriony powstające z jaj wystawionych na oddziaływanie wysokiego stężenia nasyconych kwasów tłuszczowych mają mniej komórek, zmianie ulegają też ekspresja genów oraz aktywność metaboliczna. Wszystkie wymienione zjawiska są wskaźnikami zmniejszonej zdolności utrzymania się przy życiu.
      Specjaliści podkreślają, że choć studium prowadzono na komórkach jajowych krów, odkrycia mogą pomóc w wyjaśnieniu, czemu kobietom z zaburzeniami metabolicznymi, np. otyłością czy cukrzycą, trudniej zajść w ciążę. Pacjentki z tej grupy metabolizują więcej zmagazynowanego tłuszczu, co skutkuje wyższym stężeniem kwasów tłuszczowych w obrębie jajników, a te są toksyczne dla jaja przed owulacją.
      U krów możemy wywołać bardzo podobne zaburzenia metaboliczne prowadzące do zmniejszenia płodności, a szczególnie upośledzenia jakości jaj. Między innymi z tego powodu bydło jest tak interesującym modelem w badaniach nad ludzkim zdrowiem reprodukcyjnym – przekonuje szef zespołu badawczego, prof. Jo Leroy z Uniwersytetu w Antwerpii. Wiemy z wcześniejszych badań, że wysokie stężenie kwasów tłuszczowych może wpłynąć na rozwój komórek jajowych w jajnikach, ale teraz po raz pierwszy wykazaliśmy, że ten negatywny wpływ rozciąga się również na przeżywalność zarodka.
      Veerle Van Hoeck, doktorantka z Antwerpii, badała embriony 8 dni po zapłodnieniu. Znajdowały się one wtedy w stadium blastocysty, składającej się z ok. 70-100 komórek. Akademicy przyglądali się m.in. aktywności metabolicznej zarodka, czyli temu, jakie związki pobierał ze środowiska oraz jakie i w jakich ilościach wydalał.
      Najbardziej żywotne embriony, te, które z największym prawdopodobieństwem prowadziły do udanej ciąży, cechowały się spokojnym, mniej nasilonym metabolizmem, zwłaszcza w odniesieniu do aminokwasów. Tam, gdzie komórka jajowa była eksponowana na duże stężenia kwasów tłuszczowych, zarodek wykazywał nasilony metabolizm aminokwasów, a także zmienione zużycie tlenu, glukozy oraz mleczanów – wszystko to wskazuje na upośledzenie regulacji metabolizmu i zmniejszoną żywotność – wyjaśnia dr Roger Sturmey z Uniwersytetu w Hull.
      Leroy dodaje, że takie embriony wykazują zwiększoną ekspresję genów związanych ze stresem komórkowym. Choć wyższy poziom kwasów tłuszczowych nie zatrzymuje rozwoju zarodka na etapie dwóch komórek, następuje widoczne zmniejszenie liczby komórek zdolnych do przekształcenia się w blastocystę.
      Na kolejnych etapach badań akademicy zamierzają sprawdzić, czy skutki wysokiego poziomu kwasów tłuszczowych są widoczne także po narodzinach.
    • By KopalniaWiedzy.pl
      Plezjozaury nie były jajo-, ale żyworodne. Świadczy o tym odkrycie doktorów F. Robina O'Keefe'a z Marshall University i Luisa Chiappe z Instytutu Dinozaurów Muzeum Historii Naturalnej Hrabstwa Los Angeles. Panowie zauważyli bowiem, że jeden z wystawianych obecnie eksponatów jest podwójną skamieniałością matki i płodu. W 1987 r. został on znaleziony przez Charlesa Bonnera na ranczu w hrabstwie Logan w Kansas.
      Mierząca prawie 4,7 m skamieniałość sprzed 78 mln lat reprezentuje gatunek Polycotylus latippinus. Paleontolodzy znaleźli m.in. żebra embrionu, 20 kręgów, biodra i kości kończyn. Chociaż żyworodność udokumentowano u kilku innych grup mezozoicznych gadów wodnych, po raz pierwszy odkryto coś, co świadczyłoby o takim samym rodzaju reprodukcji u plezjozaurów. W odróżnieniu od pozostałych wodnych gatunków, plezjozaury rodziły tylko jedno duże młode. Niewykluczone też, że tworzyły grupy i angażowały się w opiekę nad dziećmi.
      Naukowcy od dawna wiedzieli, że ciała plezjozaurów nie były dobrze przystosowane do wspinania się na brzeg, by złożyć w gnieździe jaja, dlatego też brak dowodów na żyworodność tych gadów wydawał się wręcz zdumiewający. […] Płód był bardzo duży w porównaniu do matki […]. Wiele współczesnych zwierząt, które rodzą pojedyncze duże młode, cechuje uspołecznienie i sprawowanie opieki matczynej. Spekulujemy więc, że plezjozaury mogły przejawiać podobne zachowania, upodobniając swoje życie społeczne bardziej do tego prowadzonego przez delfiny niż inne gady – opowiada O'Keefe.
      Skamieniałość matki jest prawie kompletna – brakuje tylko fragmentów szyi i czaszki. Cenny podwójny okaz został jakiś czas temu poddany konserwacji.
×
×
  • Create New...