Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Popychanie światłem

Recommended Posts

Od 2005 roku specjaliści spekulowali na temat istnienia w świetle sił odpychania i przyciągania. Już jakiś czas temu naukowcy z Yale University udowodnili istnienie siły przyciągania, a teraz odkryli siłę odpychania. Dzięki ich pracom w przyszłości przełącznikami w układach scalonych będzie można sterować tylko i wyłącznie za pomocą światła, bez pośrednictwa elektryczności.

To uzupełnia obraz. Udowodniliśmy, że w świetle istnieje dwubiegunowa siła, w skład której wchodzą siły przyciągania i odpychania - mówi Hong Tang, szef zespołu badawczego.

Już wcześniej naukowcy pracujący pod jego kierunkiem pokazali, że za pomocą światła można poruszyć nanoprzełącznik, przyciągając go w kierunku źródła światła. Nie byli jednak w stanie odepchnąć go, by powrócił do pierwotnej pozycji, Teraz stało się to możliwe.

Trzeba przy tym podkreślić, że odkryte przez zespół Tanga siły są czym innym, niż znane ciśnienie promieniowania światła, które pozwala popychać przedmioty.

W celu uzyskania siły odpychającej, naukowcy rozdzielili promień światła podczerwonego na dwa osobne promienie i wymusili na nich przebycie różnej długości drogi w falowodzie. W ten sposób fazy fali obu promieni przestały się ze sobą zgadzać i wytworzyła się siła odpychania. Uczeni są w stanie kontrolować tę siłę - im większa różnica pomiędzy fazami, tym mocniejsze odpychanie.

Możemy kontrolować interakcję pomiędzy promieniami. To nie jest możliwe w otwartej przestrzeni. Można to osiągnąć tylko w falowodach w skali nano, które umieszczone są blisko siebie na chipie - mówi Mo Li, jeden z autorów projektu. Działające siły są bardzo ciekawe, gdyż działają inaczej niż siły pomiędzy naładowanymi obiektami. Obiekty o przeciwnym ładunku przyciągają się, tymczasem promienie światła o różnej fazie odpychają się - dodał Wolfram Pernice.

Zastosowanie światła w miejsce elektryczności przyniesie ze sobą liczne korzyści. Urządzenia telekomunikacyjne będą działały szybciej, a jednocześnie zużyją mniej prądu. Ponadto w świetlnym układzie scalonym niemal nie będą występowały interferencje.

Share this post


Link to post
Share on other sites

''  Obiekty o przeciwnym ładunku przyciągają się, tymczasem promienie światła o różnej fazie odpychają się ''

 

Bardzo interesujące zdanie. Fazowanie - to słowo przyszłości.

Share this post


Link to post
Share on other sites

Można się było spodziewać że podobne fazy się przyciągają, gdyby było inaczej trudno by było uzyskać światło laserowe

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.
      Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.
      Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.
      Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.
      Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.
      Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.
      Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.
      Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fototerapia była znana już w starożytnym Egipcie. W pracach Hipokratesa można doszukać się wzmianek na temat leczniczych właściwości światła słonecznego. Dziś leczenie światłem można skutecznie praktykować w gabinetach odnowy biologicznej, salonach masażu czy w zaciszu własnego domu. Jakie są właściwości lampy Bioptron?
      Światło źródłem zdrowia
      Praktyki z udziałem światła słonecznego stosowane w starożytnym Egipcie nie mają co prawda potwierdzenia w formie medycznych dowodów naukowych. Jednak wówczas korzystne działanie promieni słonecznych uznawano za niepodważalny fakt. Dzięki osiągnięciom współczesnej medycyny wiadomo już, że organizm jest w stanie zamienić światło w energię elektrochemiczną. Pozyskana energia aktywuje pasmo reakcji biochemicznych w komórkach, a skutkiem tych zmian jest efekt terapeutyczny.
      Lata badań i spektakularne rezultaty
      Warto nadmienić, że badania nad pozytywnym wpływem promieni słonecznych na organizm od dziesięcioleci prowadzone są na całym świecie. Naukowcy zafascynowani możliwościami światła spolaryzowanego od lat pochylają się nad kluczowymi dla ludzkiego zdrowia projektami.
      Potrzebowano ponad 20 lat szczegółowych badań i doświadczeń, by stworzyć lampę Bioptron. Polichromatyczne światło spolaryzowane stało się głównym obiektem naukowców, którzy po latach badań opracowali rewolucyjny przyrząd, zdolny do leczenia licznych schorzeń. Światło pochodzące z lampy poprawia mikrokrążenie w tkankach, aktywując je do procesów odpornościowych. Urządzenie okazało się przełomowe, co potwierdzają specjaliści licznych gabinetów, w których jest stosowane.
      Zastosowanie lampy Bioptron
      Za główne przeznaczenie lampy uważa się leczenie zmian skórnych i wspomaganie procesu gojenia się ran. Urządzenie bardzo dobrze sprawdzi się także w leczeniu chorób reumatologicznych oraz przy dolegliwościach bólowych kręgosłupa. Lata badań wykazały ponadto, że stosowanie fototerapii przynosi doskonałe rezultaty przeciwdziałając starzeniu się skóry. Lampa szybko znalazła zatem zastosowanie w gabinetach kosmetycznych i klinikach medycyny estetycznej.
      Podkreślając dobroczynne działanie lampy na zmiany skórne, warto skupić się wokół takich schorzeń, jak opryszczka, łuszczyca, atopowe zapalenie skóry czy trądzik młodzieńczy. Regularne stosowanie lampy Bioptron skutecznie regeneruje tkanki podskórne, pomagając wyleczyć odleżyny oraz owrzodzenia.
      Za imponującymi efektami opowiadają się także lekarze specjaliści. Lampa doskonale wspomaga leczenie tkanek miękkich i stanów zapalnych, więc chętnie korzystają z niej ortopedzi oraz reumatolodzy. Polecana jest także przez grono laryngologów jako urządzenie wpierające leczenie zatok czołowych oraz zapalenia zatok obocznych nosa.
      Światło lampy Bioptron zostało opracowane przez szereg specjalistów. Jej działanie jest na tyle bezpieczne, że urządzenie można stosować samodzielnie w domu, jak również z powodzeniem wykorzystywać przy leczeniu problemów skórnych u najmłodszych.
      Partnerem materiału jest MisjaZdrowia.pl – Twoja lampa Zepter Bioptron.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Modulowane kwantowe metapowierzchnie mogą posłużyć do kontrolowania wszystkich właściwości fotonicznego kubitu, uważają naukowcy z Los Alamos National Laboratory (LANL). To przełomowe spostrzeżenie może wpłynąć na rozwój kwantowej komunikacji, informatyki, systemów obrazowania czy pozyskiwania energii. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
      Badania nad klasycznymi metapowierzchniami prowadzone są od dawna. My jednak wpadliśmy na pomysł modulowania w czasie i przestrzeni właściwości optycznych kwantowych metapowierzchni. To zaś pozwala na swobodne dowolne manipulowanie pojedynczym fotonem, najmniejszą cząstką światła, mówi Diego Dalvit z grupy Condensed Matter and Complex System w Wydziale Teorii LANL.
      Metapowierzchnie to ultracienkie powierzchnie, pozwalające na manipulowanie światłem w sposób, jaki zwykle nie występuje powierzchnie. Zespół z Los Alamos stworzył metapowierzchnię wyglądającą jak zbiór poobracanych w różne strony krzyży. Krzyżami można manipulować za pomocą laserów lub impulsów elektrycznych. Pojedynczy foton, przepuszczany przez taką metapowierzchnię, wchodzi w stan superpozycji wielu kolorów, stanów, dróg poruszania się, tworząc kwantowy stan splątany. W tym przypadku oznacza to, że foton jest w stanie jednocześnie przybrać wszystkie właściwości.
      Modulując taką metapowierzchnię za pomocą lasera lub impulsu elektrycznego, możemy kontrolować częstotliwość pojedynczego fotonu, zmienać kąt jego odbicia, kierunek jego pola elektrycznego czy jego spin, dodaje Abul Azad z Center for Integrated Nanotechnologies.
      Poprzez manipulowanie tymi właściwościami zyskujemy możliwość zapisywania informacji w fotonach.
      Naukowcy pracują też nad wykorzystaniem modulowanej kwantowej metapowierzchni do pozyskania fotonów z próżni. Kwantowa próżnia nie jest pusta. Pełno w niej wirtualnych fotonów. Za pomocą modulowanej kwantowej metapowierzchni można w sposób efektywny pozyskiwać te fotony i zamieniać je w realne pary fotonów, wyjaśnia Wilton Kort-Kamp.
      Pozyskanie fotonów z próżni i wystrzelenie ich w jednym kierunku, pozwoli uzyskać ciąg w kierunku przeciwnym. Niewykluczone zatem, że w przyszłości uda się wykorzystać ustrukturyzowane światło do generowania mechanicznego ciągu, a wszystko to dzięki metapowierzchniom i niewielkiej ilości energii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przez 20 lat naukowcy badali, jak światło obraca się wokół osi podłużnej równoległej do kierunku jego ruchu. Powstaje jednak pytanie, czy może się ono poruszać w inny sposób. Teraz, dzięki urlopowi naukowemu dwóch akademików dowiedzieliśmy się, że światło może obracać się wzdłuż osi poprzecznej, prostopadłej do kierunku jego ruchu. Może więc przypominać przemieszczającą się trąbę powietrzną.
      Andy Chong i Qiwen Zhan z University of Dayton postanowili z czystej ciekawości zbadać kwestię ruchu światła. Wzięliśmy urlop naukowy, by w całości skupić się na tych badaniach. Dzięki temu dokonaliśmy naszego odkrycia, mówi Chong.
      Uczeni przyznają, że nie wiedzieli, czego szukają i co mogą znaleźć. To była czysta ciekawość. Czy możemy zrobić to, albo zmusić światło do zachowywania się tak, dodaje profesor Zhan, który specjalizuje się w elektrooptyce oraz fotonice i jest dyrektorem UD-Fraunhofer Joint Research Center.
      Gdy już stwierdziliśmy, że potrafimy to zrobić [wymusić obrót światła wzdłuż osi poprzecznej – red.], powstało pytanie co dalej, dodają uczeni.
      Na razie nikt nie wie co dalej, a odpowiedź na to pytanie z pewnością będzie przedmiotem dalszych badań zarówno uczonych z Dayton, jak i innych grup naukowych. Trudno w tej chwili stwierdzić, w jaki sposób można nowe zjawisko wykorzystać. Być może posłuży ono np. do opracowania technologii szybszego i bezpieczniejszego przesyłania danych. Obecnie tego nie wiemy. Ale jedynym ograniczeniem jest wyobraźnia badaczy, dodaje Zhan. Chong i Zhan już wiedzą, co będą badali w następnej kolejności. Najbardziej interesuje ich interakcja światła z różnymi materiałami. Chcemy lepiej zrozumieć, jak ten nowy stan światła w chodzi w interakcje z materiałami w czasie i przestrzeni, stwierdza Chong.
      Ze szczegółami odkrycia można zapoznać się na łamach Nature Photonics.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...