Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Czternastoletni Gerrit Blank szedł do szkoły, gdy zobaczył lecącą w jego kierunku kulę światła. Rozgrzany do czerwoności kawałek skały wielkości ziarna grochu uderzył go w rękę, a następnie odbił się i wyżłobił w ziemi krater o średnicy ok. 30 cm. Mało komu się to zdarza, ale Niemiec przeżył zderzenie z małym meteorytem.

Na ręku pozostała mu 7-centymetrowa blizna. Najpierw zobaczyłem dużą kulę światła i nagle poczułem ból ręki. Chwilę później usłyszałem straszny huk, coś jak uderzenie pioruna. Dźwięk, który nadszedł po rozbłysku, był niesamowicie głośny. Jeszcze przez wiele godzin dzwoniło mi w uszach.

Uderzenie meteorytu było tak mocne, że chłopak wyleciał w powietrze. Mimo to odłamek nie stracił impetu i wydrążył w asfalcie otwór. Teraz badaniem fragmentu skały zajmują się naukowcy. Analizy chemiczne wykazały, że rzeczywiście pochodzi z kosmosu. To naprawdę meteoryt, dlatego obiekt ten jest wyjątkowo cenny dla kolekcjonerów i naukowców – podkreśla Ansgar Kortem, dyrektor Walter Hohmann Observatory.

Skąd się biorą meteoryty? Wokół Słońca poruszają się najmniejsze ciała komiczne – meteoroidy. Niekiedy wpadają one w atmosferę ziemską. Gdy przez nią przelatują, pozostawiają po sobie świetlne ślady (meteory). Podczas hamowania bardzo się rozgrzewają i wyparowują. Z tych, które pozostają, sześć na siedem wpada do wody. Szansa, iż ktoś zostanie uderzony przez meteoryt, wynosi jeden na sto milionów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Rozgrzany do czerwoności kawałek skały wielkości ziarna grochu uderzył go w rękę, a następnie odbił się i wyżłobił w ziemi krater o średnicy ok. 30 cm.

Może się czepiam, ale mam wrażenie że skoro nie miał dziury na wylot ani nie wyrwało mu ręki, to może jednak nawet nie 'otarł' tylko raczej oparzył falą uderzeniową ... 'odbił' to chyba nie jest najlepsze sformułowanie  ... :P

wynosi jeden na sto milionów
- czyli 60 żyjących osób, czyli jakiś jeden przypadek na rok ... to i tak niemało ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No właśnie, w asfalcie dziura 30 cm a na ręce 7 centymetrowa blizna? :P

I się jeszcze odbił od ręki. Chyba bardziej wiarygodną wersją jest że przeleciał koło ręki.

1/ 100 000 000? Ale nie podali w jakim czasie. Nie podali czy to chodzi o to że 1/ 100 000 000 meteorytów kogoś trafia czy 1 na 100 mln osób trafia. Nie podali czy w czasie roku, dnia czy też ogólnie człowiek ma taką szanse być trafionym w ciągu swojego życia.

Z tego prawdopodobieństwa tak naprawdę nic nie wynika poza skojarzeniem że rzadko się to zdarza :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Faktycznie kiepskie to prawdopodobieństwo. Jeżeli byłoby liczone względem średniej długości życia człowieka to by było niepokojąco duże. Być może chodzi o to, że policzono ile powierzchni Ziemi średnio zajmuje "człowiek". No i po prostu podzielono ją przez całą :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

skojarzylo mi sie z bohaterka serialu Dead Like Me (polecam najlepszy serial jaki widzialem) z tym ze tam ona zginela, a trafila ja deska klozetowa ze stacji kosmicznej ;D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Antarktyka to jedno z najlepszych na świecie miejsc do poszukiwań meteorytów. Jej suchy, pustynny klimat, powoduje, że fragmenty skał, które przed tysiącami lat spadły na Ziemię, w niewielkim stopniu ulegają wietrzeniu. Nie mówiąc już o tym, że ciemne meteoryty są dobrze widoczne na śnieżnobiałym tle. Nawet meteoryty, które zatonęły w lodzie, zostają z czasem wypchnięte w pobliżu powierzchni.
      Grupa naukowców, pracujących pod kierunkiem Marii Valdes z Field Museum i University of Chicago znalazła właśnie 5 meteorytów, w tym jeden z największych w Antarktyce – okaz o wadze 7,6 kilograma. Valdes mówi, że wśród około 45 000 meteorytów znalezionych na Antarktyce jedynie około 100 było podobnych rozmiarów lub większych. Rozmiar niekoniecznie ma znaczenie w przypadku meteorytów, czasem małe mikrometeoryty mogą mieć olbrzymią naukową wartość. Ale, oczywiście, znalezienie dużego meteorytu to rzadkość i ekscytujące wydarzenie, stwierdza uczona.
      W ubiegłym roku grupa naukowa prowadzona przez glacjolog Veronikę Tellenaar stworzyła mapę najbardziej obiecujących miejsc poszukiwań meteorytów w Antarktyce. Uczeni wzięli pod uwagę dane satelitarne, informacje o wcześniejszych znaleziskach, dane o temperaturze powierzchni i prędkości ruchu lodu. Na tej podstawie algorytm ocenił szanse na występowanie meteorytów w konkretnych lokalizacjach. Zespół Valdes jest pierwszym, który wybrał się na poszukiwania wykorzystując tę mapę. Uczeni wybrali pięć potencjalnych miejsc. Po 10 dnia poszukiwań, w jednym z nich znaleźli 5 meteorytów.
      Znaleziska trafią do Królewskiego Belgijskiego Instytutu Nauk Naturalnych, gdzie będą badane. Natomiast Valdes i każdy z naukowców biorących udział w wyprawie otrzymał próbki lodu z miejsc znalezienia meteorytów. W swoich rodzimych instytucjach będą poszukiwali w nich mikrometeorytów.
      Specjaliści szacują, że na Antarktyce znajduje się jeszcze 300 000 meteorytów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      To pierwszy przypadek, gdy w Polsce udało się znaleźć meteoryt na podstawie materiałów wideo zarejestrowanych przez kamery sieci bolidowych. Mamy ogromną satysfakcję, że nasze doświadczenie i aparatura pomiarowa pomogły w potwierdzeniu jego kosmicznego pochodzenia oraz przypisaniu go do konkretnego zjawiska bolidowego, mówi Zbigniew Tymiński z Ośrodka Radioizotopów POLATOM w Narodowym Centrum Badań Jądrowych (NCBJ), jeden z koordynatorów Polskiej Sieci Bolidowej.
      Meteoroid został zarejestrowany 15 lipca ubiegłego roku przez 3 kamery Czeskiej Sieci Bolidowej. Był on na tyle jasny, że widać go było mimo bliskiego już wschodu Słońca. Czesi, na podstawie trajektorii, określili prawdopodobne miejsce upadku obiektu. Po tym, jak opublikowali swoje dane, Polska Sieć Bolidowa i związani z nią poszukiwacze udali się się w teren. Już dwa tygodnie później na polnej drodze w pobliżu Antonina w województwie wielkopolskim znaleziono kamień ważący 350 gramów, który pokryty był skorupą obtopieniową. Specjalistyczne badania izotopowe, potwierdzające, że mamy do czynienia z przybyszem z kosmosu, przeprowadzili naukowcy z NCBJ.
      Z obliczeń wykonanych przez Czechów wynika, że obiekt poruszał się po nietypowej orbicie eliptycznej między Wenus a Marsem. W atmosferę Ziemi wszedł nad Polską, w odległości ok. 130 km od granicy z Czechami. Kamery zarejestrowały go, gdy znajdował się na wysokości 74 kilometrów. Pędził wówczas z prędkością 18 km/s, kompresując przed sobą powietrze tak, że rozgrzało się do temperatury kilku tysięcy stopni. Na wysokości około 40 km doszło do rozpadu meteoroidu. Pozostawił on na niebie ślad o długości 62 km, który urywał się, gdy meteoroid wyhamował do 13 km/s. Jak wyjaśnia Tymiński, w późniejszej fazie na upadek obiektu mają wpływ wiatry, których oddziaływania nie jesteśmy w stanie precyzyjnie przewidzieć, przez co można podać tylko przybliżone miejsce lądowania.
      Tymczasem czas od upadku do odnalezienia odgrywa kluczową rolę. W czasie podróży w przestrzeni kosmicznej meteoroid jest bombardowany przez promieniowanie kosmiczne, które prowadzi do produkcji niestabilnych krótko istniejących izotopów promieniotwórczych. Po upadku na Ziemię izotopy te zaczynają szybko zanikać, a ich obecność to mocny dowód, że badany obiekt przebywał poza atmosferą. W przypadku meteorytu z Antonina mieliśmy dużo szczęścia: kompletny okaz mogliśmy umieścić na naszym wysokorozdzielczym detektorze promieniowania gamma po zaledwie trzech tygodniach od lądowania. Wykryliśmy w nim dwanaście radioizotopów pochodzenia kosmicznego, o czasach połowicznego rozpadu od setek tysięcy lat do kilkunastu dni, mówi doktor Agnieszka Burakowska z NCBJ.
      Naukowców szczególnie cieszy zarejestrowanie wanadu-48, którego czas połowicznego rozpadu wynosi 16 dni, oraz chrom-51 o 28-dniowym czasie połowicznego rozpadu. Ponadto, dzięki zbadaniu proporcji kobaltu-60 do aluminium-26 określono masę meteoroidu przed wejściem w atmosferę. Naukowcy wyliczyli, że obiekt ważył kilkadziesiąt kilogramów i jeśli założyć, że miał typową gęstość i kształt kulisty, to jego średnica wynosiła 20-25 centymetrów.
      Meteoryt z Antonina to pospolity chondryt zwyczajny. Mimo tego, jest niezwyczajny. Dotychczas bowiem na całym świecie dzięki stacjom bolidowym wyznaczono orbity jedynie 46 meteorytów, z których niewiele udało się przebadać pod kątem obecności krótko istniejących radionuklidów kosmogenicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Około 1650 r. p.n.e. na południu Doliny Jordanu istniało wielkie miasto. Był to największy ośrodek południowego Lewantu. Miasto było 10-krotnie większe od Jerozolimy i 5-krotnie większe od Jerycha. To było niezwykle ważne miejsce. Znaczna część obrazu kulturowego tego obszaru kształtowała się właśnie tutaj, mówi emerytowany profesor James Kennett. Niedługo potem historia miasta gwałtownie dobiegła końca.
      Pracujący na stanowisku Tall el-Hammam archeolodzy znaleźli tam warstwy, świadczące o istnieniu osadnictwa przez tysiące lat. Miejscowość była budowana, niszczona i odbudowywana przez liczne wieki. Jednak nagle, w środkowej epoce brązu pojawia się 1,5-metrowa warstwa, która przyciągnęła uwagę specjalistów, gdyż zawiera niezwykły materiał. Wśród szczątków, które mogłyby świadczyć potężnych zniszczeniach spowodowanych trzęsieniem ziemi lub wojną, znajdują się fragmenty ceramiki, której powierzchnia zamieniła się w szkło, „ugotowane” cegły i częściowo stopione materiały budowlane. Wszystko to świadczy o działaniu wysokich temperatur, znacznie wyższych, niż można było uzyskać za pomocą ówczesnej technologii. Zdaniem Kennetta, emerytowanego profesora nauk o Ziemi Uniwersytetu Kalifornijskiego w Santa Barbara, temperatura musiała przekraczać 2000 stopni Celsjusza.
      Profesor Kennett wraz z grupą naukowców z innych amerykańskich uniwersytetów i instytucji badawczych, opublikowali na łamach Nature: Scientific Reports artykuł, w którym przedstawiają dowody, że Tall el-Hammam zostało zniszczone przez eksplozję meteorytu na miarę meteorytu tunguskiego. Jeśli mają rację, to mielibyśmy do czynienia z pierwszym znanym nam miastem zniszczonym przez meteoryt i – jak od kilku lat proponują niektórzy badacze – z biblijną Sodomą.
      Niezwykła bogata w węgiel warstwa zniszczenia sprzed 3600 lat w Tall el-Hammam wyznacza moment nagłego opuszczenia centrum miejskiego na południu Doliny Jordanu. W szerokim na 30 kilometrów obszarze Doliny opuszczono jednocześnie 15 innych miast i ponad 100 wiosek. Obszar ten pozostał niezamieszkany przez 300-600 lat, czytamy w podsumowaniu badań.
      Naukowcy piszą o całkowicie zniszczonym mieście, a rozkład znalezionych kości wskazuje na ekstremalne rozczłonkowanie ciał mieszkających tu ludzi. Analizy wykazały obecność sferuli bogatych w żelazo i krzem oraz stopionych metali. Myślę, że jednym z ważniejszych odkryć jest zdeformowany kwarc, który został poddany wysokiemu ciśnieniu, dodaje Kennett.
      O tym, że nad Tall el-Hammam wybuchł meteoryt ma też świadczyć wysoka koncentracja soli w badanej warstwie. Jej średnie stężenie wynosi aż 4%, a w niektórych miejscach dochodzi do 25%. Siła eksplozji mogła rozrzucić po okolicy sól z pobliskiego Morza Martwego i jego wybrzeży. I to właśnie ta sól mogła spowodować, że na setki lat liczba ludności na tych obszarach Doliny Jordanu zmniejszyła się z dziesiątków tysięcy do być może kilkuset nomadów. Na wysoce zasolonej glebie nic nie rosło, zatem ludzie na wieki opuścili te tereny. Zdobyte dowody wskazują, że w Tall el-Hammam i na okolicznych obszarach ludzie zaczęli osiedlać się około 600 lat po ich gwałtownym opuszczeniu.
      Od czasu odkrycia, iż Tall el-Hammam zostało nagle zniszczone i to być może w wyniku eksplozji meteorytu, toczy się dyskusja, czy nie mogło być ono biblijną Sodomą, jednym z dwóch miast zgładzonych przez Boga za grzechy ich mieszkańców. Opisy z Księgi Rodzaju odpowiadają temu, co mogłoby się dziać podczas eksplozji meteorytu. Nie ma jednak żadnego naukowego dowodu, że zniszczone miasto to rzeczywiście starotestamentowa Sodoma, mówi Kennett. Jeśli nawet nie jest to Sodoma, to losy miasta mogły zainspirować opowieść, którą znajdziemy w Biblii.
      Szczegóły badań nad losami Tall el-Hammam możemy poznać w artykule A Tunguska sized airburst destroyed Tall el-Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2008 roku w pobliżu szkockiej miejscowości Ullapool znaleziono pierwsze dowody na upadek wielkiego meteorytu. Na podstawie warstw materiału pochodzącego z uderzenia stwierdzono, że wydarzenie miało miejsce przed 1,2 miliardami laty w pobliżu wybrzeża. Teraz na łamach Journal of Geological Society zespół z Oxford University, na czele którego stał doktor Ken Amor, poinformowali o znalezieniu krateru. Odkryto go w odległości 15-20 kilometrów na zachód od szkockiego wybrzeża. Krater jest zagrzebany w Minch Basin pod młodszymi skałami.
      "Materiał pochodzący z uderzeń wielkich meteorytów rzadko się zachowuje, gdyż ulega szybkiej erozji. Tym bardziej ekscytujące to odkrycie. Szczęśliwym przypadkiem meteoryt spadł na dolinę ryftową i szybko został przykryty świeżymi osadami, dzięki czemu krater przetrwał. Naszym następnym celem badawczym będzie przeprowadzenie szczegółowych badań geofizycznych", mówi Amor.
      Miejsce upadku meteorytu udało się określić dzięki szczegółowym obserwacjom terenu, rozkładowi rozrzuconego materiału oraz orientacji cząstek magnetycznych.
      Przed 1,2 miliardami lat większość ziemskich organizmów żywych przebywała w oceanach, na lądach nie było żadnych roślin. W tym czasie Szkocja znajdowała się w pobliżu równika i panował w niej półpustynny klimat. Krajobraz nieco przypominał marsjański z płynącą po powierzchni wodą.
      Szacuje się, że do kolizji Ziemi z meteorytami o średnicy około 1 kilometra może dochodzić raz na 100 000 do 1 miliona lat. Szacunki są bardzo niepewne, gdyż z powodu szybkiej erozji kraterów uderzeniowych nie wiemy, do ilu takich zderzeń doszło w przeszłości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Około 3700 lat temu eksplozja meteorytu mogła zniszczyć osadnictwo na północnym brzegu Morza Martwego, wynika z badań przeprowadzonych przez Philipa Silvię z Trinity Southwest University.
      Datowanie radiowęglowe oraz minerały, które krystalizują w wysokiej temperaturze wskazują, że w Ghor w okręgu o średnicy 25 kilometrów doszło do potężnej eksplozji. Silvia i jego zespół uważają też, że w jej wyniku w niegdyś żyzna ziemie zostały wepchnięte olbrzymie ilości wrzącej soli z Morza Martwego. Ludzie nie wrócili na te obszary przez kolejnych 600–700 lat.
      Podczas dorocznego spotkania American Schools of Oriental Research Silvia poinformował, że wykopaliska w pięciu miejscach w Ghor w Jordanii wykazały, że region ten był zamieszkany nieprzerwanie przez co najmniej 2500 lat. Nagle, pod koniec epoki brązu, doszło tam do jednoczesnego upadku wszystkich osad. Poza miejscami wykopalisk w regionie zidentyfikowano co najmniej 120 niewielkich osad. Naukowcy szacują, że w momencie nadejścia kosmicznego kataklizmu region zamieszkiwało 40–60 tysięcy osób.
      Najlepsze dowody wskazujące, że pod koniec epoki brązu doszło tam do eksplozji nisko przelatującego meteorytu znaleziono w mieście Tall el-Hammam, które niektórzy identyfikują z biblijną Sodomą. Silvia i jego zespół pracują w nim od 13 lat. Naukowcy zauważyli, że wykonane z cegieł ściany i mury niemal wszystkich budynków nagle zniknęły przed około 3700 lat. Pozostały tylko kamienne fundamenty. Co wiecej, zewnętrzne ścianki wielu glinianych naczyń zostały stopione. W szklistych pozostałościach w ciągu zaledwie sekundy uformowały się kryształy cyrkonu. Wskazuje to na działanie niezwykle wysokich temperatur, być może sięgających temperatury powierzchni Słońca. Pojawił się też bardzo silny wiatr, który doprowadził do powstania niewielkich niewielkich sfer z rozbitej ceramiki, które jak deszcz opadły na Tall el-Hammam.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...