Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Na terenie Unii Europejskiej rozpoczęły się testy nowego implantu stymulującego odbudowę tkanki kostnej i chrzęstnej. Wynalazek, opracowany przez naukowców z MIT przy współpracy z kolegami z Uniwersytetu Cambridge, ma ułatwić rekonstrukcję stawów uszkodzonych np. w przebiegu chorób lub w wyniku wypadków.

Eksperymentalny produkt ma dwojakie działanie. Po pierwsze, zawarte w nim związki aktywnie stymulują odbudowę leczonej tkanki. Po drugie, stanowi on podporę dla dzielących się komórek i wspomaga odtworzenie prawidłowej struktury stawu. 

Implant opracowany przez specjalistów z MIT jest zbudowany z dwóch warstw. Pierwsza z nich, widoczna na załączonym zdjęciu jako część powyżej poziomej linii przecinającej gąbczastą strukturę, to część odpowiadająca za stymulację powstawania tkanki kostnej. Dolna pobudza wytwarzanie tkanki chrzęstnej, tworzącej naturalną powłokę ścierających się ze sobą powierzchni stawowych.

Źródłem komórek odbudowujących uszkodzoną tkankę jest szpik kostny. To z niego, dzięki stymulacji przez składniki implantu, uwalniane są tzw. mezenchymalne komórki macierzyste, zdolne do migracji i integracji w sprzyjających miejscach. Po opuszczeniu szpiku identyfikują one implant i wiążą się z nim, a następnie przekształcają się w komórki tkanki kostnej i chrzęstnej. 

Dotychczasowe testy wynalazku, przeprowadzone na kozach, zakończyły się sukcesem - uszkodzoną tkankę udało się odbudować w czasie do 16 tygodni. Teraz przyszedł czas na badania na ludziach. Od ich wyników będzie zależało ewentualne dopuszczenie nowej technologii do powszechnego zastosowania w klinikach. 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na MIT powstały ogniwa fotowoltaiczne cieńsze od ludzkiego włosa, które na kilogram własnej masy wytwarzają 18-krotnie więcej energii niż ogniwa ze szkła i krzemu. Jeśli uda się skalować tę technologię, może mieć do olbrzymi wpływ produkcję energii w wielu krajach. Jak zwraca uwagę profesor Vladimir Bulivić z MIT, w USA są setki tysięcy magazynów o olbrzymiej powierzchni dachów, jednak to lekkie konstrukcje, które nie wytrzymałyby obciążenia współczesnymi ogniwami. Jeśli będziemy mieli lekkie ogniwa, te dachy można by bardzo szybko wykorzystać do produkcji energii, mówi uczony. Jego zdaniem, pewnego dnia będzie można kupić ogniwa w rolce i rozwinąć je na dachu jak dywan.
      Cienkimi ogniwami fotowoltaicznymi można by również pokrywać żagle jednostek pływających, namioty, skrzydła dronów. Będą one szczególnie przydatne w oddalonych od ludzkich siedzib terenach oraz podczas akcji ratunkowych.
      To właśnie duża masa jest jedną z przyczyn ograniczających zastosowanie ogniw fotowoltaicznych. Obecnie istnieją cienkie ogniwa, ale muszą być one montowane na szkle. Dlatego wielu naukowców pracuje nad cienkimi, lekkimi i elastycznymi ogniwami, które można będzie nanosić na dowolną powierzchnię.
      Naukowcy z MIT pokryli plastik warstwą parylenu. To izolujący polimer, chroniący przed wilgocią i korozją chemiczną. Na wierzchu za pomocą tuszów o różnym składzie nałożyli warstwy ogniw słonecznych i grubości 2-3 mikrometrów. W warstwie konwertującej światło w elektryczność wykorzystali organiczny półprzewodnik. Elektrody zbudowali ze srebrnych nanokabli i przewodzącego polimeru. Profesor Bulović mówi, że można by użyć perowskitów, które zapewniają większą wydajność ogniwa, ale ulegają degradacji pod wpływem wilgoci i tlenu. Następnie krawędzie tak przygotowanego ogniwa pomarowano klejem i nałożono na komercyjnie dostępną wytrzymałą tkaninę. Następnie plastik oderwano od tkaniny, a na tkaninie pozostały naniesione ogniwa. Całość waży 0,1 kg/m2, a gęstość mocy tak przygotowanego ogniwa wynosi 370 W/kg. Profesor Bulović zapewnia, że proces produkcji można z łatwością skalować.
      Teraz naukowcy z MIT planują przeprowadzenie intensywnych testów oraz opracowanie warstwy ochronnej, która zapewni pracę ogniw przez lata. Zdaniem uczonego już w tej chwili takie ogniwo mogłoby pracować co najmniej 1 lub 2 lata. Po zastosowaniu warstwy ochronnej wytrzyma 5 do 10 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z MIT opracowali kwantowy „ściskacz światła”, który redukuje szum kwantowy w laserach o 15%. To pierwszy taki system, który pracuje w temperaturze pokojowej. Dzięki temu możliwe będzie wyprodukowanie niewielkich przenośnych systemów, które będzie można dobudowywać do zestawów eksperymentalnych i przeprowadzać niezwykle precyzyjne pomiary laserowe tam, gdzie szum kwantowy jest obecnie poważnym ograniczeniem.
      Sercem nowego urządzenia jest niewielka wnęka optyczna znajdująca się w komorze próżniowej. We wnęce umieszczono dwa lustra, z których średnia jednego jest mniejsza niż średnica ludzkiego włosa. Większe lustro jest zamontowane na sztywno, mniejsze zaś znajduje się na ruchomym wsporniku przypominającym sprężynę. I to właśnie kształt i budowa tego drugiego, nanomechanicznego, lustra jest kluczem do pracy całości w temperaturze pokojowej. Wpadające do wnęki światło lasera odbija się pomiędzy lustrami. Powoduje ono, że mniejsze z luster, to na wsporniku zaczyna poruszać się w przód i w tył. Dzięki temu naukowcy mogą odpowiednio dobrać właściwości kwantowe promienia wychodzącego z wnęki.
      Światło lasera opuszczające wnękę zostaje ściśnięte, co pozwala na dokonywanie bardziej precyzyjnych pomiarów, które mogą przydać się w obliczeniach kwantowych, kryptologii czy przy wykrywaniu fal grawitacyjnych.
      Najważniejszą cechą tego systemu jest to, że działa on w temperaturze pokojowej, a mimo to wciąż pozwala na dobieranie parametrów z dziedziny mechaniki kwantowej. To całkowicie zmienia reguły gry, gdyż teraz będzie można wykorzystać taki system nie tylko w naszym laboratorium, które posiada wielkie systemy kriogeniczne, ale w laboratoriach na całym świecie, mówi profesor Nergis Mavalvala, dyrektor wydziału fizyki w MIT.
      Lasery emitują uporządkowany strumień fotonów. Jednak w tym uporządkowaniu fotony mają pewną swobodę. Przez to pojawiają się kwantowe fluktuacje, tworzące niepożądany szum. Na przykład liczba fotonów, które w danym momencie docierają do celu, nie jest stała, a zmienia się wokół pewnej średniej w sposób, który jest trudny do przewidzenia. Również czas dotarcia konkretnych fotonów do celu nie jest stały.
      Obie te wartości, liczba fotonów i czas ich dotarcia do celu, decydują o tym, na ile precyzyjne są pomiary dokonywane za pomocą lasera. A z zasady nieoznaczoności Heisenberga wynika, że nie jest możliwe jednoczesne zmierzenie pozycji (czasu) i pędu (liczby) fotonów.
      Naukowcy próbują radzić sobie z tym problemem poprzez tzw. kwantowe ściskanie. To teoretyczne założenie, że niepewność we właściwościach kwantowych lasera można przedstawić za pomocą teoretycznego okręgu. Idealny okrąg reprezentuje równą niepewność w stosunku do obu właściwości (czasu i liczby fotonów). Elipsa, czyli okrąg ściśnięty, oznacza, że dla jednej z właściwości niepewność jest mniejsza, dla drugiej większa.
      Jednym ze sposobów, w jaki naukowcy realizują kwantowe ściskanie są systemy optomechaniczne, które wykorzystują lustra poruszające się pod wpływem światła lasera. Odpowiednio dobierając właściwości takich systemów naukowcy są w stanie ustanowić korelację pomiędzy obiema właściwościami kwantowymi, a co za tym idzie, zmniejszyć niepewność pomiaru i zredukować szum kwantowy.
      Dotychczas optomechaniczne ściskanie wymagało wielkich instalacji i warunków kriogenicznych. Działo się tak, gdyż w temperaturze pokojowej energia termiczna otaczająca system mogła mieć wpływ na jego działanie i wprowadzała szum termiczny, który był silniejszy od szumu kwantowego, jaki próbowano redukować. Dlatego też takie systemy pracowały w temperaturze zaledwie 10 kelwinów (-263,15 stopni Celsjusza). Tam gdzie potrzebna jest kriogenika, nie ma mowy o niewielkim przenośnym systemie. Jeśli bowiem urządzenie może pracować tylko w wielkiej zamrażarce, to nie możesz go z niej wyjąć i uruchomić poza nią, wyjaśnia Mavalvala.
      Dlatego też zespół z MIT pracujący pod kierunkiem Nancy Aggarval, postanowił zbudować system optomechaczniczny z ruchomym lustrem wykonanym z materiałów, które absorbują minimalne ilości energii cieplnej po to, by nie trzeba było takiego systemu chłodzić. Uczeni stworzyli bardzo małe lustro o średnicy 70 mikrometrów. Zbudowano je z naprzemiennie ułożonych warstw arsenku galu i arsenku galowo-aluminowego. Oba te materiały mają wysoce uporządkowaną strukturę atomową, która zapobiega utratom ciepła. Materiały nieuporządkowane łatwo tracą energię, gdyż w ich strukturze znajduje się wiele miejsc, gdzie elektrony mogą się odbijać i zderzać. W bardziej uporządkowanych materiałach jest mniej takich miejsc, wyjaśnia Aggarwal.
      Wspomniane wielowarstwowe lustro zawieszono na wsporniku o długości 55 mikrometrów. Całości nadano taki kształt, by absorbowała jak najmniej energii termicznej. System przetestowano na Louisiana State University. Dzięki niemu naukowcy byli w stanie określić kwantowe fluktuacje liczby fotonów względem czasu ich przybycia do lustra. Pozwoliło im to na zredukowanie szumu o 15% i uzyskanie bardziej precyzyjnego „ściśniętego” promienia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Nottingham stwierdzili, że niektóre szympansy mają w szkielecie serca kość - os cordis. Odkrycie to może mieć spore znaczenie dla metod dbania o ich zdrowie i ochrony. Biolodzy podkreślają, że dotąd os cordis opisano u pewnych przeżuwaczy, wielbłądowatych czy wydr, nigdy jednak u człowiekowatych. Wyniki badań opisano na łamach Scientific Reports.
      Dzikie szympansy są zagrożone. Skądinąd wiadomo, że choroby serca występują u niemal 70% trzymanych w niewoli dorosłych osobników. Zrozumienie budowy serca jest więc kluczowe dla odpowiedniej opieki medycznej.
      Do odkrycia doszło dzięki zastosowaniu kilku różnych technik, w tym mikrotomografii. U naszych szympansów os cordis była niewielka [...] - wyjaśnia dr Catrin Rutland.
      Naukowcy muszą zrozumieć, jaką funkcję os cordis pełni w sercu szympansów albo czy jej obecność wiąże się w jakiś sposób z chorobą kardiologiczną. Brytyjczycy zauważyli bowiem np., że częściej występowała u osobników z idiopatycznym włóknieniem mięśnia sercowego (ang. idiopathic myocardial fibrosis, IMF). [W przyszłości] powinna też zostać rozważona możliwość, że os cordis występuje u ludzi cierpiących na podobne zaburzenia sercowo-naczyniowe - mówi Rutland.
      Analizowano związki między obecnością os cordis, chrząstki sercowej (cartilago cordis) lub ektopowych zwapnień a poziomem IMF, wiekiem, płcią oraz wagą serca.
      W 4 sercach w obrębie trójkąta włóknistego prawego szkieletu serca wykryto pojedynczą hipergęstą strukturę. Skany w wysokiej rozdzielczości i badania histopatologiczne ujawniły 2 przypadki kości beleczkowych, 1 przypadek chrząstki szklistej oraz 1 przypadek ogniska zmineralizowanej metaplazji włóknisto-chrzęstnej (z kostnieniem śródchrzęstnym). U 4 osobników stwierdzono zaś liczne ogniska ektopowych zwapnień, głównie w obrębie ścian dużych naczyń. We wszystkich sercach z wyraźnym zwłóknieniem występowały twory chrzęstne lub kostne oraz podwyższony poziom kolagenu w tkankach przyległych do kości bądź chrząstki. Serca bez lub ze słabo zaawansowanym IMF nie wykazywały obecności os czy cartilago cordis. Nowe badanie pokazuje więc, że os i cartilago cordis występują u pewnych szympansów, szczególnie u dotkniętych IFM, i mogą wpływać na ryzyko arytmii i nagłej śmierci.
      Generalnie naukowcy wykazali, że hipergęsty obszar występował w sercu tak samic, jak i samców w różnym wieku. Na razie badania wykonano u zaledwie 16 osobników, dlatego konieczne są dalsze studia, które pokażą, jak bardzo os cordis jest rozpowszechniona w populacji.
      Dokładna funkcja cartilago bądź os cordis jest też niejasna u innych zwierząt. U bydła uznaje się, że os cordis wspiera normalny ruch zastawek w ciężkim sercu (nie została powiązana z chorobą sercowo-naczyniową).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mieszkaniec Gorzowa Wielkopolskiego odzyskał wzrok po... wypadku samochodowym. Wcześniej, przez ponad 20 lat był niewidomy. Janusz Góraj przechodził przez ulicę, gdy na przejściu dla pieszych potrącił go samochód.
      Upadłem na maskę samochodu, uderzyłem głową o tę maskę, później osunąłem się na jezdnię, mówił w wywiadzie dla Polsat News.
      Pan Góraj stracił wzrok z powodu ostrej alergii. Nie widział na jedno oko, w drugim widział tylko światło i kontury obiektów.
      Po wypadku został odwieziony do szpitala. Podczas pobytu w nim zaczął odzyskiwać wzrok w lewym oku. Dwa tygodnie później widział już wszystko wyraźnie.
      Ani pan Janusz, ani lekarze nie potrafią wyjaśnić, co się stało. Niewykluczone, że wzrok odzyskał dzięki lekom podawanym mu w trakcie leczenia ortopedycznego.
      Teraz mężczyzna odzyskał samodzielność. Znalazł też pracę ochroniarza w szpitalu, w którym odzyskał wzrok.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chrząstka w ludzkich stawach może regenerować się w procesie podobnym do tego, w jakim salamandrom odrastają utracone kończyny, donoszą naukowcy z Duke University. W ostatnim numerze Science Advances opisali oni mechanizm odtwarzania się tkanki chrzęstnej. Wydaje się, że lepiej działa on w stawie skokowym, a gorzej w stawie biodrowym. Zrozumienie mechanizmu regeneracji może doprowadzić do opracowania metod leczenia choroby zwyrodnieniowej stawów, najbardziej rozpowszechnionej na świecie choroby atakującej stawy u człowieka.
      W nowo utworzonych proteinach w tkankach występuje mało lub wcale konwersji aminokwasów. W starych białkach jest ich bardzo wiele. Profesor Virginia Byers Kraus i jej zespół wykorzystali spektrometrię mas do zbadania wieku kluczowych protein, w tym kolagenu, w ludzkiej tkance chrzęstnej. Okazało się, że wiek tkanki zależał w dużym stopniu od tego, gdzie się ona znajdowała. Chrząstka w stawie skokowym była młoda, w stawie kolanowym była w średnim wieku, a w stawie biodrowym była stara. Ten wiek i lokalizacja ludzkiej tkanki chrzęstnej wykazuje korelację ze sposobem regeneracji kończyn u niektórych zwierząt, którym łatwiej regenerują się ostatnie segmenty kończyn czy ogonów.
      Odkrycie to wyjaśnia również, dlaczego zranione kolano, a szczególnie biodro, regeneruje się dłużej i częściej uraz prowadzi do zapalenia stawów niż w przypadku kostki.
      Cały proces regeneracji jest regulowany przez mikroRNA, które jest bardziej aktywne u zwierząt zdolnych do regeneracji kończyn. Okazało się, że u ludzi mikroRNA jest bardziej aktywne w kostkach, niż w kolanach czy biodrach i bardziej aktywne w wyższych warstwach tkanki chrzęstnej niż w tych położonych głębiej.
      To niesamowite, że mechanizmy regulujące regeneracje kończyn u salamander wydają się być również odpowiedzialne za naprawę tkanki chrzęstnej u ludzi, mówi doktor Ming-Feng Hsueh.
      Sądzimy, że możliwe jest pobudzenie tych mechanizmów regulujących tak, by doprowadziły do pełnej regeneracji chrząstki w stawie. Jeśli uda nam się dowiedzieć, które z mechanizmów regulujących wykorzystuje salamandra, a nie mamy ich my, to być może będziemy nawet w stanie w przyszłości pozyskać te mechanizmy i doprowadzić do częściowej lub całkowitej regeneracji ludzkiej kończyny. Sądzimy bowiem, że jest to mechanizm, który można zastosować do naprawy wielu różnych tkanek, nie tylko tkanki chrzęstnej, stwierdza Kraus.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...