Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Mają szczęście ci górnicy, którzy żyją i pracują na obszarach występowania termitów. Okazuje się bowiem, że mogą one wskazywać lokalizację rud złota i złóż diamentów, co oznacza sporą oszczędność czasu i pieniędzy.

Przed sprowadzeniem ciężkiego sprzętu warto pobrać próbki materiału wydrążonego przez termity – przekonuje Anna Petts, doktorantka Uniwersytetu w Adelajdzie. Pani geolog wyjaśnia, że firmy sprawdzają zazwyczaj skład osadów powierzchniowych, próbując w ten sposób oszacować, co może się znajdować głębiej. Wg niej, łatwo się wtedy pomylić, ponieważ osady bywają roznoszone przez wody powodziowe.

Jako że wywiercenie 1 metra to spory koszt (w ojczyźnie Petts rzędu 100 dolarów australijskich), naukowcy i kompanie górnicze stale poszukują wiarygodnych metod oceny tego, co znajduje się na różnych głębokościach.

Termity wydają się idealnymi próbnikami. Schodzą nawet na 30. metr, zbierając wilgotną ziemię, która zostanie użyta do budowy kopca. Petts opowiada, że wieśniacy w Afryce przepłukują glebę z domów termitów i udaje im się znaleźć nawet centymetrowe samorodki złota. Na pustyni Kalahari w kopcach natrafiano z kolei na granaty. To zadziwiające, ponieważ skała spągowa z diamentami znajduje się tam pod 100-metrową niekiedy warstwą piasku (w RPA granaty są produktem odpadowym eksploatacji diamentów; te dwa rodzaje kamieni występują tu obok siebie).

Opierając się na doniesieniach z Czarnego Lądu, pani geolog postanowiła sprawdzić, czy metoda sprawdzi się w przypadku australijskich złóż i termitów. Udała się więc na pustynię Tanami, gdzie rozkład minerałów jest już znany. Z zewnętrznych ścian kolonii pobierała próbki o wadze od 50 dag do 1 kg. Okazało się, że kopce rzeczywiście dają pojęcie o tym, co znajduje się pod nimi. Często minerały znajdowane w budowlach tych społecznych owadów nie były obecne na powierzchni, ale znajdowały się na większych głębokościach profilu glebowego, np. na 20.-30. m. Teraz Petts zamierza sprawdzić metodę "na termita" w nieznanych geologicznie rejonach.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kopce znajdujące się na terenie kampusu Louisiana State University w Baton Rouge są najstarszymi w Ameryce Północnej strukturami wykonanymi ludzką ręką, donoszą autorzy najnowszych badań. Dwa 6-metrowe kopce to jedne z ponad 800 tego typu struktur zidentyfikowanych na terenie Louisiany. Wiele z nich uległo zniszczeniu, jednak kopce w Baton Rouge zostały zachowane i od 1999 roku LSU Campus Mounds są wpisane do Narodowego Rejestru Miejsc Zabytkowych.
      Brooks Ellwood z Wydziału Geologii i Geofizyki LSU wraz z zespołem zbadali rdzenie z obu kopców. Znaleźli w nich popiół ze spalonych trzcin oraz spalone osteony. Osteon to mikroskopijna miniaturowa jednostka strukturalna kości zbitej, występująca u ssaków i dinozaurów. Datowanie radiowęglowe wykazało, że kopce powstawały przez tysiące lat. Pierwszy z nich – znajdujący się na południu Kopiec B – zaczęto budować około 11 000 lat temu.
      Zdaniem naukowców, warstwy popiołu i spalone mikroskopijne fragmenty kości mogą świadczyć o tym, że kopce powstawały dla celów ceremonialnych. Autochtoni rozpalali tam wielkie ogniska, których temperatura była zbyt wysoka, by przygotowywać żywność. Nie wiadomo, jakie ssaki były kremowane na kopcach, ani dlaczego.
      Kopiec B powstawał przez tysiące lat, aż osiągnął połowę obecnej wysokości. Około 8200 lat temu został opuszczony i nie był używany przez około 1000 lat. Wydarzenie to zbiegło się z czasem z gwałtownym krótkotrwałym ochłodzeniem, które miało miejsce pomiędzy holocenem starszym a środkowym. Nie wiemy, dlaczego 8200 lat temu kopiec porzucono. Wiemy natomiast, że doszło do gwałtownych zmian środowiska, co mogło wpłynąć na codzienne życie ludzi, mówi Ellwood.
      Następnie, przed 7500 laty, na północ od pierwszego kopca zaczęto wznosić drugi. Tym razem do jego budowy ludzie wykorzystali muł z pobliskiego obszaru zalewowego. Z tego mułu, warstwa po warstwie, wznieśli dzisiejszy Kopiec A do mniej więcej połowy jego obecnej wysokości.
      Analizy wskazują, że w pewnym momencie ludzie oczyścili opuszczony wcześniej Kopiec B i ponownie zaczęli go wznosić. Usypali go do obecnej wysokości zanim ukończyli prace nad Kopcem A. Prac na obu kopcach zaprzestano około 6000 lat temu.
      Azymut grzbietów obu kopców odchylony jest o około 8,5 stopnia na wschód od bieguna północnego. Współautor badań, astronom Geoffrey Clayton mówi, że 6000 lat temu gdy zapadał zmrok, w miejscu na które wskazują grzbiety kopców ludzie obserwowali wschodzącego czerwonego olbrzyma Arktura, jedną z najjaśniejszych gwiazd widocznych z Ziemi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Termity oddzieliły się od innych karaczanów przed 150 milionami lat i wyewoluowały do życia społecznego. Obecnie niektóre gatunki termitów tworzą gigantyczne kolonie składające się z milionów osobników żyjących w ziemi. Inne, w tym termity żyjące w drewnie, żyją w niedużych koloniach liczących kilka tysięcy osobników. Naukowcy z Okinawy odkryli, że termity drzewne odbyły dziesiątki podróży transoceanicznych, dzięki którym są tak zróżnicowane jak obecnie.
      Termity drzewne, Kalotermitidae, są często postrzegane jako prymitywne, gdyż tworzą małe kolnie i oddzieliły się od innych termitów dość wcześnie, już około 100 milionów lat temu. Jednak tak naprawdę niewiele wiemy o tej rodzinie termitów, mówi główny autor badań, doktor Aleš Buček z Okinawskiego Podyplomowego Uniwersytetu Nauki i Technologii (OIST) . Dotychczas większość badań nad tą rodziną koncentrowało się nad jednym gatunkiem, często występującym w domach mieszkalnych i traktowanym jak szkodnik.
      Naukowcy z OIST przez 30 lat kolekcjonowali przedstawicieli Kalotermitidae. Do analizy wybrali przedstawicieli 120 gatunków. Niektóre z nich były reprezentowane przez wiele próbek zebranych w różnych miejscach. Te 120 gatunków to ponad 25% wszystkich znanych Kalotermitidae. W OIST wykonano sekwencjonowanie DNA owadów.
      Okazało się, że w ciągu ostatnich 50 milionów lat termity przekroczyły oceany co najmniej 40 razy, pływając m.in. pomiędzy Ameryką Południową a Afryką. W skali milionów lat podróże te skutkowały dużym różnicowaniem się Kalotermitidae. One są bardzo dobre w podróżach transoceanicznych. Ich domem jest drewno, które spełnia rolę niewielkiego statku, mówi Buček.
      Z badań wynika, że większość rodzajów Kalotermitidae pochodzi z Ameryki Południowej. Uczeni potwierdzili też, że w ostatnich wiekach ludzie wzięli udział w większości procesu rozprzestrzeniania się termitów.
      Badania podważają też powszechne przekonanie, jakoby termity drzewne wiodły prymitywny tryb życia. Okazało się bowiem, że wśród najstarszych gatunków Kalotermitidae są i takie, które tworzą wielkie kolonie zamieszkujące różne kawałki drewna połączone ze sobą podziemnymi tunelami.
      To pokazuje, jak mało wiemy o termitach, zróżnicowaniu ich styli życia oraz organizacji ich życia społecznego. Im więcej dowiemy się o ich zachowaniu i ekologii, tym lepiej odtworzymy ewolucję ich życia społecznego i dowiemy się, dlaczego odniosły taki sukces, dodaje profesor Tom Bourguignon, jeden z autorów badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nad odpowiednimi sposobami przyjaznego klimatowi gospodarowania glebą, tak aby wzbogacić ją w huminy – materię organiczną odporną na rozkład mikrobiologiczny – pracuje międzynarodowy zespół naukowy z udziałem Polaków.
      Gleba jest globalnie największym magazynem węgla, który jest wiązany w glebowej materii organicznej. Niestety, trwałość jej na ogół nie jest wysoka, gdyż z czasem przy udziale mikroorganizmów ulega ona mineralizacji, a uwolniony węgiel jest emitowany do atmosfery. Zmiany klimatyczne związane z emisją dwutlenku węgla skłaniają badaczy do szukania sposobów na zwiększenie w glebie zawartości węgla, który jest wiązany w bardziej trwałych formach.Rośliny pobierają dwutlenek węgla z powietrza i wbudowują węgiel w swoje tkanki. Po obumarciu rośliny – w wyniku skomplikowanych procesów biochemicznych – tkanki te przekształcają się w glebową materię organiczną. W ten sposób węgiel jest usuwany z atmosfery i magazynowany w roślinach i glebie.
      Międzynarodowe badania polowe
      Naukowcy wybiorą te metody agrotechniczne, które mogą wpłynąć na optymalną zawartość węgla organicznego w glebie. Określą stabilność glebowej materii organicznej w zależności od warunków gospodarowania w różnych warunkach klimatycznych Europu i USA.
      Mamy dostęp do unikatowych wieloletnich badań polowych prowadzonych przez partnerów na różnych glebach w odmiennych warunkach klimatycznych – mówi kierownik projektu prof. Jerzy Weber z Instytutu Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu.

      Liderem konsorcjum „SOMPACS – soil management effects on Soil Organic Matter Properties And Carbon Sequestration” jest Uniwersytet Przyrodniczy we Wrocławiu, pozostałe polskie ośrodki zaangażowane w projekt to Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Instytut Agrofizyki PAN w Lublinie, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Uniwersytet Wrocławski oraz Grupa Producentów Rolnych TERRA z Prusic koło Złotoryi.
      Huminy odporne na rozkład
      Badacze sprawdzą, jak różne sposoby użytkowania i uprawiania gleby wpływają na tworzenie się w glebie frakcji najbardziej odpornej na procesy rozkładu. Ta frakcja to tzw. huminy.
      Jak wyjaśnia prof. Jerzy Weber, substancje humusowe zawarte w glebie bada się rozpuszczając je w alkaliach, dzięki czemu mogą być wydzielane jej poszczególne frakcje. Na tej zasadzie uzyskano preparat immunologiczny prof. Tołpy, który na rynku farmaceutycznym zrobił furorę w latach 80. XX wieku.
      Huminy są trudne do badania, bo nie rozpuszczają się w alkaliach. Frakcja ta będzie we Wrocławiu izolowana poprzez usuwanie wszystkich pozostałych składników materiału glebowego metodą opublikowaną przez nas w 2021 roku. Na uniwersytecie Limerick w Irlandii będzie wykorzystywana do tego metoda ekstrakcji, a frakcje uzyskane obu metodami będą analizowane przez wszystkich uczestników międzynarodowego konsorcjum. Będziemy dążyć do określenia w jaki sposób różne użytkowanie gleby wpływa na zawartość i właściwości humin – tłumaczy prof. Weber.
      Przyjazne klimatowi sposoby gospodarowania glebą
      Badacze pobiorą próbki z ośmiu wieloletnich doświadczeń polowych z różnymi systemami gospodarowania glebą na Litwie, we Włoszech, w Irlandii i w Polsce (tu stosowanymi od wieku), a także z najdłuższego na świecie brytyjskiego eksperymentu Broadbalk prowadzonego nieprzerwanie przez od 178 lat.
      Wśród tych systemów jest uprawa konwencjonalna lub bezorkowa, nawożenie mineralne lub organiczne, uprawa z międzyplonami lub bez nich, grunty orne lub użytki zielone oraz gleby uprawiane albo nieuprawiane.
      Eksperymenty będą również prowadzone na polach produkcyjnych, gdzie oprócz stosowanych metod uprawy zastosowane zostaną dodatki stymulujące wzrost korzeni (komercyjne produkty humusowe, biowęgiel, poferment z biogazowni). Wpływ tych dodatków na zawartość i właściwości glebowej materii organicznej zostanie zbadany w doświadczeniach polowych, a także w badaniach inkubacyjnych nad jej rozkładem mikrobiologicznym. Równolegle do pobierania próbek gleby, w doświadczeniach polowych będzie określone plonowanie, a także w warunkach polowych będzie mierzona emisja CO2 z gleby.
      Podstawowe właściwości gleby zostaną uzupełnione analizą aktywności enzymatycznej, badaniem retencji wody w glebie, hydrofobowości gleby i stabilności jej struktury, składu mineralogicznego koloidów glebowych, a także specjalistycznymi badaniami właściwości mikrobiologicznych, w tym genetyki mikrobiomu i mykobiomu – wyjaśnia prof. Weber.
      Najwyższa nagroda w europejskim konkursie
      Projekt międzynarodowego konsorcjum, którego liderem jest Uniwersytet Przyrodniczy we Wrocławiu, został najwyżej oceniony w pierwszym zewnętrznym konkursie The European Joint Programme EJP SOIL Towards climate-smart sustainable management of agricultural soils.
      Celem konkursu jest przyjazne dla klimatu zrównoważone gospodarowanie glebami rolniczymi, co daje możliwość połączenia kwestii zmian klimatycznych z szeroko rozumianym rolnictwem. Z około 80 zgłoszonych projektów do finansowania wybrano 11. Najwyżej oceniono właśnie „SOMPACS”.
      Badania potrwają do 2025. Poza polskimi instytucjami realizować je będzie: University of Limerick z Irlandii, University of Rostock z Niemiec, University of Wyoming w Stanach Zjednoczonych, University of Naples we Włoszech, Vytautas Magnis University i Agricultural Academy w Kownie na Litwie, Rothamsted Research w Harpenden w Wielkiej Brytanii. W Polsce badania będą finansowane przez Narodowe Centrum Badań i Rozwoju, które łącznie na ten cel przeznaczyło 200 tysięcy euro.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na ETH Zurich powstało niezwykle lekkie, 18-karatowe złoto, do którego wytworzenia użyto plastikowej matrycy w miejsce stopu metali. Lekkie złoto znajdzie zastosowanie w jubilerstwie, przede wszystkim przy produkcji zegarków, gdzie niewielkie zwiększenie wagi może być bardzo uciążliwe ale posiadacza zbyt ciężkiego zegarka.
      Lekkie złoto to dzieło Leonie van't Hag z zespołu profesora Raffaele Mezzengi. Waży ono od 5 do 10 razy mniej niż standardowe 18-karatowe złoto, które jest zwykle wykonane z 3/4 złota i 1/4 miedzi. Taki stop ma gęstość około 15 g/cm3.
      Gęstość nowego materiału wynosi zaledwie 1,7 g/cm3 i wciąż jest to jak najbardziej prawdziwe 18-karatowe złoto. Zamiast stopu metali van't Hagn, Mezenga i ich zespół wykorzystali włókna proteinowe i polimer, z których utworzyli matrycę, na którą nałożyli cienkie nanokryształy złota. Same nanokryształy zawierają też wiele pustych niewidocznych gołym okiem przestrzeni. Uczeni opisali swoje badania na łamach Advanced Functional Materials.
      Cały proces produkcyjny przebiegał następująco: najpierw wszystkie składniki umieścili w wodzie, tworząc układ dyspersyjny. Po dodaniu soli zamienił się on w żel. Następnie wodę zastąpiono w nim alkoholem. Całość umieszczono w specjalnej komorze, gdzie w warunkach wysokiego ciśnienia i w atmosferze nadkrytycznego CO2 doszło do wymieszania się alkoholu i dwutlenku węgla. Po zmniejszeniu ciśnienia całość zamieniła się w homogeniczny aerożel. Następnie za pomocą wysokiej temperatury pozbyto się polimerów i nadano całości ostateczny kształt.
      To złoto ma właściwości plastiku. Gdy upadnie na twardą powierzchnię, wydaje taki dźwięk, jak tworzywo sztucznej. Jednak ma połysk złota, można go polerować i obrabiać jak złoto. Co więcej można też dopasować jego twardość do przewidywanych zastosowań. Można też zmienić jego kolor zmieniając kształt tworzących go nanocząstek. Jeśli np. użyjemy sferycznych nanocząstek, złoto będzie miało fioletowy połysk. Możemy w ten sposób uzyskać wszystkie rodzaje złota o potrzebnych nam właściwościach.
      Mezzenga mówi, że „plastikowe” złoto będzie szczególnie użyteczne w jubilerstwie i wytwarzaniu zegarków, gdzie dużą rolę odgrywa waga produktu. Nadaje się też do roli katalizatora, do zastosowania w elektronice czy w osłonach przed promieniowaniem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy roztopił złoto w temperaturze pokojowej. Do odkrycia doszło przypadkiem.
      Ludvig de Knoop z Chalmers University of Technology chciał zobaczyć, jak na tomy złota wpływa największe powiększenie ich w mikroskopie elektronowym. Byłem naprawdę zaskoczony, mówił de Knoop. Tym, co go tak zadziwiło było odkrycie, że w temperaturze pokojowej, pod wpływem działania mikroskopu, wierzchnia warstwa złota uległa stopieniu.
      To niezwykłe zjawisko, które daje nam nową podstawową wiedzę o złocie, stwierdził uczony. Modelowanie komputerowe wykazało, że do stopienia złota nie doszło wskutek wzrostu temperatury, a w wyniku oddziaływania niedoskonałego pola elektrycznego, które wzbudziło atomy.
      Odkrycie, że złoto może w ten sposób zmienić swoją strukturę jest nie tylko spektakularne, ale też ma przełomowe znaczenie dla nauki, mówią naukowcy. Będzie to miało olbrzymi wpływ na nauki o materiałach.
      Uczeni odkryli też, że możliwe jest przełączanie pomiędzy strukturą stałą a stopioną, dzięki czemu mogą powstać nowe typy czujników, katalizatorów czy tranzystorów. Jako, że możemy kontrolować i zmieniać właściwości atomów na powierzchni otwierają się nam nowe możliwości zastosowań materiału, stwierdziła współautorka badań profesor Eva Olsson.
      Warto tutaj podkreślić, że zmiana stanu skupienia na powierzchni zaszła w próbce o szerokości liczonej w nanometrach. Uzyskanie podobnego efektu na próbkach większych rozmiarów wymagałoby zastosowania napięcia elektrycznego, jakiego nie jesteśmy w stanie osiągnąć.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...