Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Miniaturowy, napędzany bezprzewodowo robot, zdolny do kontrolowanego poruszania się w cieczach, został opracowany przez badaczy z Szwajcarskiego Federalnego Instytutu Technologii w Zurichu. Długość nanomaszyny to zaledwie 20 mikrometrów (μm).

Wynalazek nazwano sztuczną wicią bakteryjną (ang. Artificial Bacterial Flagellum - ABF), gdyż swoim kształtem rzeczywiście przypomina organellum umożliwiające niektórym bakteriom poruszanie się w wodzie. Wykonano go jednak z innych materiałów - do jego produkcji wykorzystano metale stosowane zwykle w komponentach elektronicznych.

Produkcja ABF rozpoczyna się od przygotowania płytki złożonej z arsenku galowo-indowego (InGaAs) nałożonego na warstwę arsenku galu (GaAs). Dzięki procesom fotolitografii oraz rytownictwa wycina się z niej fragment, z którego powstanie później korpus wici. Zanim jednak urządzenie będzie gotowe do użycia, do jednego z końców wyciętego elementu przyłączana jest główka zbudowana z mieszaniny chromu, niklu i złota.

Przygotowany materiał jest odcinany od podłoża za pomocą mikromanipulatora. Po umieszczeniu w wodzie automatycznie przyjmuje on następnie swój charakterystyczny helikalny kształt.

Do poruszania ABF wykorzystywane są zsynchronizowane za pomocą komputera generatory pola magnetycznego. Sterują one kierunkiem obracania się metalowej główki nanomaszyny oraz pozwalają jej na skręcanie. Możliwe jest dzięki temu precyzyjne nawigowanie urządzeniem w roztworze wodnym:

 

Jak oceniają autorzy ABF, jego udoskonalone wersje mogą znaleźć zastosowanie w medycynie. Rzeczywiście, nietrudno wyobrazić sobie podobną nanomaszynę, która dostarcza leki do ściśle określonych miejsc w organizmie lub przeprowadza w jego wnętrzu nieskomplikowane zabiegi chirurgiczne.

Science fiction? Dziś z pewnością tak, ale za kilka lat...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W ramach przypomnienia sobie ostatnio przyswojonych informacji - jakoby plemnik był najmniejszą komórką człowieka, myślałem po tytule że to oczywiste że ileś plemników przeradza się z czasem w chirurgów - niektórzy nawet w wybitnych ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe, ciekawe, chociaż trochę sztywniak z niego. Natomiast po obrazku widać, że ma jednak ok. 40 um (widać to lepiej na filmiku z trzema takimi skrętkami). No i nie jest to "maszyna" ani tym bardziej "robot". :-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Czy możliwe jest, żeby kopnięta sterta cegieł poukładała się sama, tworząc chodnik? Nie bardzo. Jeszcze mniej prawdopodobne jest, żeby cegły same utworzyły budynek. Tymczasem w skali nano jest to możliwe i uczyniono pierwszy krok ku takiej technologii.
      Cząsteczki chemiczne mają tę przewagę nad cegłami, że same się łączą w różne struktury. Trudno jednak zmusić je do tworzenia struktur takich, jakie byśmy chcieli. W dwóch wymiarach takie sztuczki już się udawały: kiedy w cienką warstwę jakiejś substancji wrzucamy odpowiednio dobraną cząsteczkę „gościnną", cząsteczki samorzutnie zorganizują się wokół takiego wtrącenia. Takie struktury jednak pozostawały zawsze dwuwymiarowe, a w nanotechnologii chcemy tworzyć struktury trójwymiarowe.
      Naukowcy z brytyjskiego University of Nottingham po czterech latach badań jako pierwsi osiągnęli przełom, zmuszając cząsteczki do samorzutnej organizacji w struktury trójwymiarowe. Udało im się to osiągnąć, pokrywając powierzchnię jednocząsteczkową warstwą molekuł kwasu tetrakarboksylowego i wrzucając w nią cząsteczki fulerenu C60(tzw. buckyball, sferyczna, pusta w środku cząsteczka złożona z 60 atomów węgla). Cząsteczki kwasu automatycznie organizują się wokół boków kulistego fulerenu. To sposób na tworzenie dodatkowych warstw cząsteczek i znaczący krok w kierunku samoorganizujących się nanostruktur.
      Nie jest to pierwsze osiągnięcie profesora Neila Champnessa i jego zespołu. Wcześniej odkryli oni, jak wykorzystać wiązania wodorowe do łączenia cząstek DNA w molekularne struktury, a niedawno opublikowali studium opisujące, jak nieregularne cząsteczki są adsorbowane na strukturach powierzchniowych.
      Studium na temat tworzenia trójwymiarowych, samoorganizujących się struktur ukazało się w prestiżowym periodyku Nature Chemistry.
    • przez KopalniaWiedzy.pl
      Brak wody pitnej to problem wielu rejonów świata. Niestety, jednocześnie większość z nich jest zbyt biedna, żeby w pełni rozwiązać ten problem. Częstym przypadkiem jest brak możliwości, technologii a zwłaszcza pieniędzy na stworzenie sieci wodociągowej, stacji uzdatniania wody, czy podobnej infrastruktury. Wynalazek południowoafrykańskich naukowców - saszetka wielkości torebki herbaty - ma umożliwić uzdatnienie nawet bardzo brudnej wody tanio i skutecznie.
      Autorem rozwiązania jest Eugene Cloete, wykładowca Stellenbosch University w RPA, mikrobiolog, specjalista od systemów uzdatniania wody i nanotechnologii. Właśnie nanotechnologia jest kluczem do opracowanego filtra. Saszetka ma taki kształt i wielkość, że można ją łatwo dopasować do typowej szyjki butelki. Specjalna kompozycja materiałów: węgla aktywowanego oraz przede wszystkim bakteriobójczych nanowłókien pochłania zanieczyszczenia i zabija mikroorganizmy.
      Jak zapewnia Marelize Botes, jedna torebka wystarcza do oczyszczenia całej butelki nawet bardzo brudnej wody. Po oczyszczeniu woda ma być równie wysokiej jakości, jak kupowana woda butelkowana. Zużyty filtr może być bezpiecznie wyrzucony - rozkłada się w ciągu kilku dni, nie pozostawia śladu i nie jest toksyczny dla człowieka.
      Celem Eugene Cloete'a było stworzenie taniej metody, prostej w użyciu i niewymagającej infrastruktury. Docelowy koszt ma wynosić około pół centa amerykańskiego za sztukę, co jest ceną przystępną nawet dla bardzo ubogich terenów.
      Obecnie trwają badania wynalazku przez południowoafrykańską instytucję standaryzującą. Jeśli zakończą się pomyślnie - w co twórcy wierzą - przetestowany filtr ma trafić do sprzedaży jeszcze w tym roku.
    • przez KopalniaWiedzy.pl
      Nie kończą się nowe pomysły i koncepcje na zastosowanie grafenu - pojedynczej warstwy atomów węgla - w nanotechnologii. Do listy jego wielu atrakcyjnych cech trzeba dodać jeszcze jedną: dobrze współpracuje z DNA.
      Stworzenie nowych bioczujników, pozwalających na szybkie i bezbłędne identyfikowanie przyczyn chorób, to zajęcie wielu naukowców i laboratoriów na świecie. Narodowe Laboratorium Północno-Zachodniego Pacyfiku, należące do Departamentu Energii Stanów Zjednoczonych oraz Uniwersytet Princeton osiągnęły w tej dziedzinie wymierny sukces, łącząc grafen z ludzkim DNA.
      Podczas badań okazało się, że pojedyncza spirala DNA silnie i trwale łączy się z powłoką grafenową. To podsunęło myśl do sporządzenia czujnika, wykrywającego konkretne DNA w badanych próbkach. Pojedyncza spirala DNA z genu poszukiwanego czynnika chorobotwórczego jest umieszczana na powierzchni grafenu. Ponieważ naturalnym stanem cząstek DNA jest podwójna spirala, oddzielona nitka „poszukuje" odpowiadającej sobie pary. Zatem kiedy taki czujnik zanurzymy w krwi, lub innym płynie ustrojowym, umocowana na grafenie pojedyncza nić DNA będzie działać jak bardzo wybiórczy haczyk, łapiący swój odpowiednik. Jeśli poszukiwany czynnik „złapie przynętę" i przyczepi się do czujnika, ten generuje sygnał, który można zarejestrować.
      Sprawdzono, jaka jest czułość i wybiórczość projektowanego bioczujnika. Podczas prób z dołączanymi do wolno pływających nici DNA fluorescencyjnymi molekułami wykazano, że „łapanie" dokładnie poszukiwanych fragmentów jest dwukrotnie silniejsze niż łapanie fragmentów jedynie podobnych, które mogłyby fałszować wyniki.
      Zbadano też trwałość takiego czujnika - i tu dokonano kolejnego rewelacyjnego odkrycia. Okazało się, że grafen stanowi doskonałą ochronę nici DNA. Podczas prób z DNAzą - enzymem trawiącym DNA - okazało się, że podczas gdy wolno pływające nici są rozkładane natychmiast, nici DNA przytwierdzone do grafenowej powierzchni unikają zniszczenia przez 60 minut.
      Prostota działania i wykonania, oraz wysoka trwałość i skuteczność mogą sprawić, że rozpowszechnienie się tego typu czujników stanie się przełomem w diagnostyce medycznej. Nie koniec to jednak planów zespołu badawczego związanych z odkrytymi właściwościami grafenu. Skoro grafen tak dobrze współdziała z DNA, chcą poszukać sposobu na jej wykorzystanie do dostarczania leków bezpośrednio do chorych komórek, a może nawet wykorzystanie jej w terapii genowej.
    • przez KopalniaWiedzy.pl
      Złoto od zawsze było drogim symbolem zbytku i luksusu. Dziś zyskuje nowe znaczenie, jego właściwości są coraz szerzej wykorzystywane w nowoczesnych technologiach. Począwszy od pozłacania styków, które dzięki temu nie śniedzieją i nie przerywają (kto pamięta, że dawniej klawiatury komputerów miały złocone styki?), aż po... no właśnie, gdzie jest granica zastosowania złota? Wyobrażacie sobie złoto w podeszwach waszych butów? No to wyobraźcie.
      Dr Adrian Fuchs ze Szkoły Nauk Fizycznych i Chemicznych Uniwersytetu Technologicznego w Queensland opracował nową technologię, może nie sensacyjną, ale mająca wiele zastosowań praktycznych. Australijski uczony odkrył sposób skutecznego rozpraszania nanocząstek metali w tworzywach sztucznych, jak polimery, czy plastik. Nowa metoda pozwoli uzyskiwać materiały o doskonałych, czy niespotykanych właściwościach. Pierwsze, co się narzuca, to materiały o zwiększonej wytrzymałości. Trwała i bardziej kolorowa farba, nie pękające plastikowe obudowy, elastyczne, ale nie ścierające się podeszwy butów. Farba - jak mówi odkrywca - to w zasadzie plastik, dodanie do niej nanocząstek złota powoduje, że kolory z całego widzialnego spektrum stają się bardziej intensywne, a sama farba odporna na trudne warunki środowiskowe.
      Właściwości metali zmieniają się w nanoskali, łącząc unikalne cechy nanocząstek z tworzywami sztucznymi uzyskujemy całkiem nowe materiały kompozytowe. To pozwoli na opracowanie nie tylko nowych, lepszych powierzchni ochronnych, ale na przykład lepiej działających leków, czy nowatorskich katalizatorów.
      Doskonałe przewodnictwo złota pozwoli właśnie, wg dra Fuchsa, po wymieszaniu z cząsteczkami innych metali, uzyskać nowe rodzaje katalizatorów. Nanocząstki złota i ditlenku tytanu zatopione w polimerze tworzą bardzo efektywny katalizator oczyszczający wodę; ditlenek tytanu pochłania światło i przekształca je w prąd elektryczny, który jest dalej przewodzony przez złoto. Zatapianie nanocząstek w plastikowych kapsułkach pozwoli na lepsze dozowanie leków przeciwnowotworowych, które będą same wyszukiwać ogniska chorobowe.
      Szybsze i tańsze komputery dzięki nowym rodzajom układów elektronicznych, lepsze wyświetlacze w telewizorach i monitorach i wiele innych możliwości otwiera się przed technologami. Nanocząstki złota i innych metali już niedługo będą powszechne w naszym otoczeniu.
    • przez KopalniaWiedzy.pl
      Badacze na całym świecie nie ustają w pracach nad rozwojem nanotechnologii. Nanomateriały o nieosiągalnych dotąd strukturach już rewolucjonizuję naukę i technologię, ale ambicje są większe. Mikroskopijnej, nanometrowej wielkości urządzenia to niełatwy cel, ale jego osiągnięcie będzie kolejną rewolucją. Od dawna duże nadzieje pokładane są w specyficznych związkach chemicznych, zwanych rotaksanami, które mogą stanowić „trybiki" nanourządzeń.
      Rotaksanami od dawna zajmowała się chemia organiczna. Są to związki będące połączeniem dwóch cząsteczek, ale połączeniem nie chemicznym, a mechanicznym. Jedna z nich stanowi jak gdyby oś ze zgrubieniami, „stoperami" na końcach, na niej umieszczona jest druga cząsteczka na podobieństwo koła na osi, które nie spada dzięki stoperom. Podobieństwo do znanych nam układów mechanicznych daje nadzieje na wykorzystanie ich do budowy bardziej skomplikowanych struktur i urządzeń. Zbudowaniem nowych, lepszych rotaksanów zajęli się naukowcy z Life & Medical Sciences Institute (LIMES) na uniwersytecie w Bonn: dr Damian Ackermann oraz prof. Michael Famulok.
      Ich pomysł na udoskonalenie tych związków to wykorzystanie do ich budowy znanych nam samoorganizujących się cegiełek: DNA. Ale nie interesowała ich tym razem zdolność DNA do przenoszenia informacji genetycznej. Skupili się na szczególnych mechanicznych właściwościach helisy DNA: jej podwójna spirala jest wyjątkowo stabilną i trwałą strukturą. Można nią operować niemal dowolnie: rozdzielenie dwóch strun w dowolnym miejscu pozwala utworzyć punkty połączeń z innych fragmentami i związkami, pełniącymi inne funkcje. W ten sposób można teoretycznie utworzyć bardzo złożoną strukturę, czy maszynerię. Badacze porównują to do budowania z klocków, dających szerokie możliwości.
      Tak właśnie prezentuje się nowy rodzaj rotaksanu, stworzony przez niemieckich biochemików. Osadzone na „ośce" kółko może się swobodnie obracać. Skoro mamy już oś i koło, to pora, żeby zaczęło się obracać, mamy na to kilka pomysłów. - mówią autorzy sukcesu - Naszym następnym celem jest skonstruowanie systemów, w których będzie można kontrolować ruch w nanoskali. Możliwe będzie także łączenie tych mechanicznych „trybików" z systemami biologicznymi, jak białkami.
      Jakie będą ostateczne rezultaty - jeszcze nie wiadomo, przed badaczami długa droga. Ale jest to znaczący przełom i fundamenty pod projektowanie różnych nanomechanicznych systemów opartych na mechanicznych właściwościach podwójnej spirali DNA. Mechanizmów, które do tej pory wydawały się nie możliwe.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...