Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Jaką funkcję, oprócz przechowywania materiału genetycznego, może pełnić jądro komórkowe? Zdaniem niemiecko-angielskiego zespołu badaczy, u zwierząt prowadzących nocny tryb życia pełni ono funkcję... soczewki. O odkryciu informuje prestiżowe czasopismo Cell.

Swoje wnioski autorzy opierają na badaniu architektury jądra komórkowego, czyli rozłożenia różnych fragmentów nici DNA w jego wnętrzu. Materiał genetyczny nie jest bowiem jednorodny - składa się on z silnie zbitej i nieaktywnej heterochromatyny oraz z euchromatyny, czyli fragmentów DNA o znacznie niższym stopniu zagęszczenia, do których z łatwością mogą przyłączać się enzymy odpowiedzialne za ekspresję genów.

W typowej niedzielącej się komórce euchromatyna zlokalizowana jest w centrum jądra komórkowego, zaś jego peryferie są zajęte przez heterochromatynę. Sytuacja wygląda jednak zupełnie inaczej w pręcikach, czyli komórkach wyspecjalizowanych w wykrywaniu światła o minimalnym natężeniu, u ssaków prowadzących nocny tryb życia. Ich DNA jest zorganizowane w sposób dokładnie odwrotny, tzn. heterochromatyna znajduje się u nich w pobliżu centrum jądra komórkowego, zaś odcinki o luźniejszej strukturze znajdują się na jego obrzeżach. Jak się okazuje, nie jest to zjawisko przypadkowe.

Dzięki badaniu właściwości optycznych jąder komórkowych zauważono, że w pręcikach u zwierząt nocnych skupiają one światło, pozwalając w ten sposób na zwiększenie czułości oka. W oczywisty sposób wspomaga to widzenie w nocy, gdy ilość światła docierającego do narządu wzroku jest minimalna.

Co ciekawe, badanie na myszach wykazało, iż charakterystyczna architektura jądra komórkowego nie jest widoczna od urodzenia, lecz rozwija się dopiero po kilku tygodniach życia. Wiele wskazuje także na to, że cecha ta pojawiła się w toku ewolucji co najmniej kilkakrotnie i nie jest efektem pojedynczej zmiany, "dziedziczonej" przez kolejne gatunki preferujące nocny tryb życia.

Jak przyznają autorzy odkrycia, prezentowana przez nich hipoteza była z początku wyśmiewana przez kolegów. Z czasem udało się jednak udowodnić, że nietypowe rozłożenie DNA ma swój cel. Okazuje się więc, że odwaga jest prawdziwą cnotą także dla naukowców.

Share this post


Link to post
Share on other sites

Bardzo ciekawe odkrycie ;) Im więcej dowiaduję się o tym jak różnorakie funkcje potrafią pełnić części składowe organizmu tym bardziej jestem zaskoczony :) Po prostu ideał ergonomii/optymalizacji :P

 

Jak przyznają autorzy odkrycia, prezentowana przez nich hipoteza była z początku wyśmiewana przez kolegów. Z czasem udało się jednak udowodnić, że nietypowe rozłożenie DNA ma swój cel. Okazuje się więc, że odwaga jest prawdziwą cnotą także dla naukowców.

 

No akurat to jest standard w nauce - bardzo często czyjeś hipotezy/wyniki badań są obśmiewane, po czym okazuje się, że szydercy powinni się ugryźć w język, bo zostało dokonane przełomowe odkrycie :D Ile razy już tak było.. z Kopernikiem chociażby :D

Share this post


Link to post
Share on other sites

A mnie niesamowicie ciekawi, skąd się bierze to zjawisko u jeleni. O ile dobrze wiem, w naturze są one raczej zwierzętami dziennymi, a na tryb nocny przerzuciły się stosunkowo niedawno z powodu strachu przed ludźmi. I to by dopiero było ciekawe - zbadać, jak one tego dokonały w tak krótkim czasie ;)

Share this post


Link to post
Share on other sites

Gdyby to samo zjawisko udało się wywoływać u ludzi moglibyśmy poczynić spore oszczędności na oświetleniu ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz pierwszy udało się zidentyfikować DNA sprzed 2 milionów lat. Mikroskopijne fragmenty genomu znaleziono w osadach z epoki lodowej z północnej Grenlandii. Jest więc ono aż o milion lat starsze, niż DNA pozyskane ze szczątkow syberyjskiego mamuta.
      Odkrywcy najstarszego DNA, naukowcy z University of Cambridge, wykorzystali je do zbadania ekosystemu sprzed dwóch milionów lat. Klimat podlegał wówczas dużym zmianom, mają więc najdzieję, że uda się dzięki temu lepiej przewidzieć skutki obecnych zmian klimatycznych.
      Odkrycia dokonał zespół profesorów Eske Willersleva i Kurt Kjæra. Otworzyliśmy nowy rozdział historii rozciągający się o milion lat dłużej niż dotychczas. Po raz pierwszy możemy bezpośrednio analizować tak stare DNA ekosystemu przeszłości. DNA ulega szybkiej degradacji, ale wykazaliśmy, że w odpowiednich warunkach możemy cofnąć się bardziej, niż sobie wyobrażaliśmy, stwierdził Willerslev. DNA zachowało się głęboko pod osadami, które nadbudowywały się przez ponad 20 000 lat. Osady zostały następnie zamknięte w lodzie lub wiecznej zmarzlinie, dzięki czemu przez 2 miliony lat nie zostały naruszone przez ludzi", dodaje Kjær.
      Niekompletne próbki, o długości milionowych części milimetra, pozyskano z Formacji København. Ma ona grubość około 100 metrów i znajduje się u ujścia fiordu wychodzącego na Ocean Arktyczny w najbardziej na północ wysuniętym miejscu Grenlandii. W czasach, gdy znalezione DNA tam trafiło, klimat był bardzo zmienny, a średnie temperatury na Grenlandii były o 10 do 17 stopni wyższe niż obecnie.
      Do mrówcze pracy przy poszukiwaniu i analizowaniu fragmentów DNA zaangażowano 40 naukowców z Wielkiej Brytanii, Danii, Francji, Szwecji, Norwegii, USA i Niemiec. Uczeni musieli najpierw sprawdzić, czy w osadach jest DNA, a jeśli jest, to czy uda się je z osadów wyizolować i zbadać. Po wyizolowaniu porównali każdy fragment z bazami danych zawierających kod genetyczny współczesnych roślin, zwierząt i mikroorganizmów. Dzięki temu zidentyfikowali zające, renifery, lemingi, brzozy i inne rośliny. Znaleziono też fragment DNA mastodonta, co było niespodzianką, gdyż dotychczas nie wiedziano, że te żyjące w Ameryce Północnej i Centralnej zwierzęta dotarły aż do Grenlandii.
      Niektóre z fragmentów DNA z łatwością można było sklasyfikować jako kod genetyczny przodków obecnie żyjących konkretnych gatunków, inne fragmenty zaś pozwalały na określenie jedynie rodzaju. Jeszcze inne zaś należały do organizmów, których w żaden sposób nie udało się umiejscowić w bazach danych współcześnie żyjących roślin czy zwierząt.
      Próbki sprzed 2 milionów lat pozwolą naukowcom lepiej zrozumieć ewolucję wielu obecnie istniejących gatunków. Ekosystem Kap København sprzed 2 milionów lat nie ma swojego dzisiejszego odpowiednika, organizmy żyły tam w znacząco wyższych temperaturach niż obecnie. Dlatego też te badania mogą nam pokazać, czego należy się spodziewać w przyszłości w związku z globalnym ociepleniem, dodaje profesor Mikkel Pedersen z Lundbeck Foundation GeoGenetics Centre. Kluczowe pytanie brzmi, do jakiego stopnia gatunki są w stanie zaadaptować się do zmian klimatu i przystosować do wyższych temperatur. Uzyskane przez nas dane wskazują, że może to zrobić więcej gatunków, niż sądziliśmy. Jednak pokazują one też, że gatunki potrzebują czasu, na adaptację. Tempo obecnego globalnego ocieplenia jest tak duże, że wiele organizmów nie będzie miało czasu na adaptację, więc zmiany klimatu to olbrzymie zagrożenie dla bioróżnorodności. Niektóre gatunki, w tym rośliny, czeka zagłada, dodaje uczony.
      Odkrycie z Formacji København otwiera nowe możliwości przed ekspertami zajmującymi się prehistorycznym DNA. Wiemy, że materiał genetyczny najlepiej przechowuje się w chłodnym, suchym otoczeniu. Jednak skoro udało się nam pozyskać DNA z gliny i kwarcu, być może uda się to też w przypadku wilgotnych gorących miejsc w Afryce. Jeśli wydobylibyśmy DNA z afrykańskiej gleby, moglibyśmy zdobyć przełomowe informacje o pochodzeniu wielu gatunków, może nawet o pierwszych ludziach i ich przodkach. Możliwości są nieograniczone, dodaje Willerslev.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczonym z Francis Crick Institute, Natural History Museum oraz University College London udało się uzyskać najstarsze ludzkie DNA z terenu Wielkiej Brytanii. Pochodzi ono od osób, które żyły ponad 13 500 lat temu i wskazuje, że pod koniec epoki lodowej na Wyspy Brytyjskie dotarły dwie różne grupy ludzi. Informacje genetyczne, wraz z odkryciami dotyczącymi diety i kultury tych grup, pozwalają na stworzenie bardziej kompletnego obrazu H. sapiens, którzy ponownie skolonizowali Wyspy pod koniec epoki lodowej.
      W czasie ostatnie epoki lodowej około 2/3 obszaru Wysp Brytyjskich była pokryta lodem. Mniej więcej 17 000 lat temu klimat zaczął się ocieplać, lód ustępował, zachodziły znaczące zmiany środowiskowe, a ludzie ponownie zaczęli migrować na północ Europy. Teraz, po raz pierwszy, udało się stwierdzić, że teren dzisiejszego Zjednoczonego Królestwa był rekolonizowany przez co najmniej dwie grupy o różnym pochodzeniu.
      Pierwsza z nich to prawdopodobnie ta sama populacja, która stworzyła kulturę magdaleńską. To wytworami tej kultury są monumentalne przykłady malarstwa jaskiniowego z Lascaux czy Altamiry. Przedstawiciele kultury magdaleńskiej byli pierwszymi, którzy przed 16 000 lat zaczęli ponownie kolonizować Europę Północą. Druga grupa – zachodni łowcy-zbieracze (WHG) – pojawili się w północno-zachodniej Europie około 2000 lat później. Ich przodkowie pochodzili prawdopodobnie z Bliskiego Wschodu.
      Chcieliśmy dowiedzieć się, kto jako pierwszy mógł zasiedlić Brytanię. Z wcześniejszych badań, w tym zbadań nad Cheddar Man, wiedzieliśmy, że WHG mieszkali na Wyspach już około 10 500 lat temu. Nie wiedzieliśmy jednak, kiedy na nie przybyli i czy byli jedyną populacją, mówi Selina Brace, główna badaczka z Natural History Museum.
      Interesował nas okres od 20 do 10 tysięcy lat temu. To część paleolitu. Wówczas na terenie Brytanii dochodziło do ważnym zmian, zwiększyła się powierzchnia terenów leśnych, zmienił się skład gatunkowy zwierząt, na które można było polować. Dysponujemy niewieloma ludzkimi szczątkami z tego tego okresu. Jest ich może około 12 z sześciu stanowisk archeologicznych. Przyjrzeliśmy się szczątkom dwóch osób – jednej z Gough's Cave w Somerset i drugiej z Kendrick's Cave w Walii, dodaje Sophy Charlton z University of York.
      Osoba z Gough's Cave zmarła około 15 000 lat temu, a jej DNA wskazuje, jej przodkami byli pierwsi migranci do północno-zachodniej Europy. Osoba z Kendrick's Cave zmarła około 13 500 lat temu i pochodzi z WHG.
      Badania, z których wynikami możemy zapoznać się w Nature Ecology and Evolution, wykazały również, że obie grupy były zróżnicowane nie tylko pod względem genetycznym, ale również kulturowym. Analizy chemiczne kości wykazały, że osoby z Kendrick's Cave spożywały pokarm pochodzący z wód morskich i słodkich, w tym duże ssaki morskie. Z kolei u osoby z Gough's Cave nie znaleźliśmy żadnych śladów spożywania pokarmów z wód. Jadła ona przede wszystkim lądowych roślinożerców, jak jelenie, konie czy wołowate (np. tura), dodaje profesor Rhiannon Stevens z UCL.
      Obie grupy różniły się też praktykami grzebalnymi. W Kendrick's Cave nie pogrzebano żadnych kości zwierzęcych, co dowodzi, że jaskinia była wyłącznie cmentarzem dla ludzi. Jedyne znalezione tam kości zwierzęce były ozdobione, służyły więc jako dzieła sztuki lub przedmioty użytkowe. Z kolei w Gough's Cave znaleziono modyfikowane kości zwierzęce i ludzkie. Te ludzkie były silnie modyfikowane. Znaleziona tam czaszka wskazuje, że przerobiono ją na rodzaj kubka, co jest interpretowane jako dowód na rytualny kanibalizm mieszkańców Gough's Cave.
      To najstarsze jak dotąd genetyczne zapiski historii Brytanii, mówi Pontus Skoglund z Francis Crick Institute. Uczony nie wyklucza, że w przyszłości uda się pozyskać jeszcze starsze DNA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od czasu rozkodowania genomu wiemy o mutacjach zachodzących w DNA. Od 1/3 do 1/4 mutacji w sekwencjach kodujących białka to tzw. mutacje synonimiczne. Dochodzi w nich do takiej zmiany pojedynczego nukleotydu w genie, która nie powoduje zmiany aminokwasu w kodowanym białku. Przez lata uważano, że mutacje takie są neutralne. Jednak naukowcy z University of Michigan odkryli właśnie, że większość mutacji synonimicznych to mutacje bardzo szkodliwe.
      Odkrycie, że większość mutacji synonimicznych nie jest neutralnych, może mieć znaczące skutki dla badań nad mechanizmami różnych chorób, badań genetycznych i biologii ewolucyjnej.Tym bardziej, jeśli spostrzeżenia naukowców z Michigan potwierdzą się w przypadku innych genów i organizmów.
      Wiele badań biologicznych opiera się na założeniu, że mutacje synonimiczne są neutralne, więc obalenie tego poglądu niesie ze sobą szeroko zakrojone konsekwencje. Na przykład mutacje synonimiczne nie są brane pod uwagę podczas badań mutacji powodujących choroby, a jak się okazuje, mogą być powszechnie występującym i niedocenianym mechanizmem chorobotwórczym, mówi jeden z autorów badań, Jianzhi Zhang.
      Zhang i jego koledzy wiedzieli, że od dekady pojawiają się pojedyncze dowody wskazujące, że mutacje synonimiczne mogą nie być neutralne. Uczeni postanowili więc sprawdzić, czy to wyjątki od reguły, czy raczej reguła. Naukowcy za cel badań wybrali drożdże z gatunku Saccharomyces cerevisiae. Ich szczepy są szeroko stosowane jako drożdże piekarnicze, piwowarskie czy winiarskie. Wybór padł właśnie na nie, gdyż jedna generacja tych drożdży żyje około 80 minut, a organizmy te są małe, co pozwala na łatwą, precyzyjną i wygodną obserwację wpływu na drożdże dużej liczby mutacji synonimicznych. Za pomocą techniki CRISPR/Ca9 stworzyli ponad 8000 zmutowanych szczepów drożdży. Każdy z tych szczepów posiadał mutacje synonimiczne, niesynonimiczne oraz nonsensowne w jednym z 21 interesujących naukowców fragmentów.
      Następnie naukowcy oceniali stan poszczególnych szczepów, biorąc pod uwagę tempo ich namnażania się w porównaniu ze szczepami kontrolnymi, do których nie wprowadzono mutacji. W ten sposób, badając tempo reprodukcji, naukowcy mogli stwierdzić, czy mutacje są korzystne, szkodliwe czy neutralne.
      Ku ich zdumieniu okazało się, że aż 75,9% mutacji synonimicznych jest wyraźnie szkodliwych, a 1,3% –wyraźnie korzystnych. Anegdotyczne dowody na to, że mutacje synonimiczne nie są neutralne okazały się wierzchołkiem góry lodowej, mówi główny autor badań, Xukang Shen. Zbadaliśmy też mechanizm, za pomocą którego mutacje synonimiczne wpływały na zdrowie drożdży i stwierdziliśmy, że jednym z powodów jest fakt, iż mutacje synonimiczne i niesynonimiczne wpływają na poziom ekspresji genów, dodaje uczony.
      Naukowcy byli zaskoczeni faktem, że olbrzymia większość mutacji synonimicznych nie jest neutralna. Takie wyniki wskazują bowiem, że dla pojawienia się chorób mutacje synonimiczne są niemal równie ważne co mutacje niesynonimiczne.
      Więcej na ten temat można przeczytać na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Biochemia widzenia to skomplikowany proces. Molekuły pozwalające oglądać otaczającą rzeczywistość przez długi czas pozostawały nieuchwytne dla naukowców. Zespół prowadzony przez prof. Macieja Wojtkowskiego z Międzynarodowego Centrum Badań Oka (ICTER) proces ten umożliwia dzięki innowacyjnemu dwufotonowemu skaningowemu oftalmoskopowi fluorescencyjnemu.
      Zwykło się mawiać, że oczy są zwierciadłem duszy - bez wątpienia są jednak naszym oknem na świat. Mechanizmy zachodzące w siatkówce są kluczowe dla odbioru bodźców wzrokowych ze środowiska. To pierwszy i bardzo ważny etap drogi, jaką musi przejść impuls światła, by zostać przetworzony na obraz.
      Przez wiele lat naukowcy i lekarze nie byli w stanie obserwować procesów zachodzących w fotoczułych komórkach siatkówki u ludzi. Zespół naukowców prowadzony przez prof. Macieja Wojtkowskiego z ICTER w Instytucie Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) stworzył dwufotonowy skaningowy oftalmoskop fluorescencyjny (TPEF-SLO). Jest to instrument pozwalający na podglądanie biochemii widzenia w żywym oku. Prof. Wojtkowski zwraca uwagę, że „dzięki ścisłej współpracy z biochemikiem prof. Krzysztofem Palczewskim z University of California Irvine oraz laserową grupą prof. Grzegorza Sobonia z Politechniki Wrocławskiej jesteśmy w stanie szybko i skutecznie walidować nową metodę obrazową i wykorzystać ją w praktyce”.
      Jak to się dzieje, że widzimy?
      Ludzkie oko jest jednym z najbardziej precyzyjnych narządów naszego ciała, umożliwiającym rozróżnienie ok. 200 barw czystych. Mieszając te barwy można uzyskać ok. 17 000 rozróżnialnych odcieni, a uwzględniając nasze możliwości odróżnienia ok. 300 stopni nasilenia barw związanych z natężeniem światła, uzyskamy oszałamiającą liczbę 5 milionów odbieranych kolorów.
      W siatkówce, czyli części oka, która odbiera bodźce wzrokowe, występują czopki i pręciki. Czopki umożliwiają widzenie i rozróżnianie barw w silnym oświetleniu, a pręciki cechuje wrażliwość na pojedyncze impulsy światła widzialnego o zmroku lub w nocy. Wrażenia wzrokowe są przekazywane nerwem wzrokowym do mózgu (pierwotnej kory wzrokowej), ale impuls, który je przenosi powstaje w wyniku reakcji chemicznych zachodzących w komórkach siatkówki. Upraszczając możemy powiedzieć, że ludzkie oko jest fabryką biochemiczną, której aktywność jest uzależniona od reakcji chemicznych jednej molekuły – retinalu. Ta cząsteczka jest niezbędna dla funkcji receptorów białek G, np. rodopsyny w pręcikach, i przetwarzania światła na impulsy elektryczne – mówi prof. Maciej Wojtkowski.
      Rodopsyna jest światłoczułym receptorem białka G. Zaabsorbowanie kwantu promieniowania powoduje izomeryzację 11-cis-retinalu związanego z rodopsyna, jego uwolnienie i inicjację impulsu wzrokowego przekazywanego do mózgu. W przypadku niedoboru witaminy A, która jest źródłem retinalu, dochodzi do tzw. kurzej ślepoty i ograniczenia zdolności do widzenia o zmroku lub w nocy.
      Niestety, praktycznie przez cały cykl widzenia, molekuły niezbędne do prawidłowej funkcji siatkówki pozostają niewykrywalne dla instrumentów naukowych. To dlatego, że łatwo można je pomylić z lipofuscynami, czyli związkami odkładającymi się w siatkówce. Jest jednak jeden proces fizyczny, dzięki któremu molekuły mogą być widoczne - nie możemy ich wykryć za pomocą promieniowania UV, ale możemy je dostrzec stosując fluorescencję ze wzbudzeniem dwufotonowym – dodaje dr inż. Jakub Bogusławski, główny wykonawca projektu.
      Proces dwufotonowy, paleta barw
      Okulistyczne techniki obrazowania to podstawa w diagnozowaniu patologii siatkówki. Dzięki optycznej tomografii OCT, skaningowej oftalmoskopii laserowej (SLO) i autofluorescencji dna oka, dokonaliśmy postępów w mechanizmach ich zrozumienia. To jednak niewystarczający arsenał do pełnego wglądu w chemię widzenia. Nieinwazyjna ocena procesów metabolicznych zachodzących w komórkach siatkówki (regeneracja pigmentu wzrokowego) jest niezbędna dla rozwoju przyszłych terapii. W przypadku zwyrodnienia plamki żółtej związanego z wiekiem (AMD), które jest jedną z najczęstszych chorób powodujących ślepotę, na wczesnym etapie nie można odróżnić komórek zmienionej i prawidłowej siatkówki. Można jednak je wychwycić dzięki biochemicznym markerom - o ile udałoby się je wzbudzić fluorescencyjnie.
      Właśnie taka jest idea obrazowania fluorescencyjnego ze wzbudzeniem dwufotonowym (TPE). Jest to zaawansowana technika pomiaru czynnościowego barwników siatkówki, która może ujawnić różne cechy tej części oka, niewidoczne w innych badaniach. W porównaniu do tradycyjnych metod obrazowania opartych na jednofotonowej fluorescencji, TPE pozwala oglądać metabolity witaminy A, które biorą udział w widzeniu. Oko jest idealnym narządem do obrazowania metodą wielofotonową – mówi prof. Wojtkowski, którego zespół odpowiada za odkrycie. Tkanki oka, takie jak twardówka, rogówka czy soczewka, są wysoce przezroczyste dla światła w bliskiej podczerwieni. To z kolei w sposób nieinwazyjny przenika do tkanek siatkówki.
      Obrazy uzyskane dzięki TPEF-SLO potwierdziły, że jest to satysfakcjonujący sposób oglądania molekuł niezbędnych dla prawidłowej funkcji cyklu widzenia. Porównanie danych między ludźmi i mysimi modelami chorób siatkówki ujawniło podobieństwo do modeli mysich, w których szybko gromadzą się produkty kondensacji bisretinoidów, składników lipofuscyny. Wierzymy, że molekuły kluczowe dla cyklu wzrokowego i toksyczne produkty uboczne tego szlaku metabolicznego będą mogły być mierzone i określane ilościowo za pomocą obrazowania TPE – mówi dr Grażyna Palczewska, jeden z głównych wykonawców projektu.
      Ten instrument pozwalający na nieinwazyjną ocenę stanu metabolicznego ludzkiej siatkówki otwiera liczne możliwości terapeutyczne dla wszystkich chorób degeneracyjnych siatkówki. Może być przydatny także do testowania nowych leków, bo dzięki zrozumieniu biochemii widzenia, lekarze będą w stanie trafiać dokładnie tam, gdzie potrzeba. Badania dotyczące TPEF-SLO zostały opublikowane w czasopiśmie The Journal of Clinical Investigation.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do poprawy pogarszającego się wzroku wystarczą 3 minuty tygodniowo porannej ekspozycji oczu na światło czerwone o długości fali 670 nm, donoszą naukowcy z University College London. Najnowsze badanie opiera się na wcześniej przeprowadzonych eksperymentach, kiedy to ten sam zespół naukowy zauważył, że wystawienie oka na trzyminutową ekspozycję światła czerwonego uruchamiało mitochondria w siatkówce.
      Teraz naukowcy chcieli sprawdzić, jaki wpływ na oczy będzie miała pojedyncza trzyminutowa ekspozycja na światło o odpowiedniej długości fali. Postanowili też sprawdzić, czy skuteczne będzie światło o znacznie mniejszej energii niż w poprzednich badaniach. Jako, że podczas wcześniejszych badań zauważyli, że mitochondria „pracują na zmiany” w zależności od pory dnia, zbadali też, czy istnieje różnica pomiędzy wystawieniem oczu na działanie światła rano i wieczorem.
      Okazało się, że po trzyminutowym wystawieniu oka na działanie światła o długości fali 670 nm wiązało się z 17-procentową poprawą postrzegania kontrastu pomiędzy kolorami. Efekt taki utrzymywał się przez co najmniej tydzień. Co interesujące, pozytywny skutek miało wyłącznie poddanie się działania takiego światła rankiem. Oświetlanie oka po południu nie przyniosło żadnej poprawy.
      Autorzy badań mówią, że ich odkrycie może doprowadzić do pojawienia się taniej domowej terapii, która pomoże milionom ludzi na całym świecie, doświadczającym naturalnego pogarszania się wzroku. Wykazaliśmy, że pojedyncza poranna ekspozycja na światło czerwone o odpowiedniej długości fali znacząco poprawia wzrok, mówi główny autor badań, profesor Glen Jeffery.
      Komórki w naszych siatkówkach zaczynają starzeć się około 40. roku życia. Pogarsza się nam wzrok. Proces ten jest częściowo związany z gorszym funkcjonowaniem mitochondriów. Ich zagęszczenie jest największe w fotoreceptorach, które mają też największe wymagania energetyczne. Z tego też powodu siatkówka jest jednym z najszybciej starzejących się organów naszego organizmu. W ciągu życia dochodzi w niej do aż 70-procentowego spadku produkcji ATP, substancji odgrywającej bardzo ważną rolę w produkcji energii. To prowadzi do znacznego upośledzenia funkcji fotoreceptorów, którym brakuje energii.
      Uczeni z UCL najpierw przeprowadzili eksperymenty na myszach, muszkach-owocówkach i trzmielach, u których zauważyli znacznie poprawienie funkcjonowania fotoreceptorów po oświetleniu ich światłem o długości 670 nm. Mitochondria są szczególnie wrażliwe na większe długości fali, które wpływają na ich funkcjonowanie. Fale o długości 650–900 nm powodują zwiększenie produkcji energii przez mitochondria, dodaje Jeffery.
      Fotoreceptory składają się z czopków, odpowiedzialnych za widzenie kolorów, oraz pręcików, reagujących na intensywność światła, pozwalających np. na widzenie przy słabym oświetleniu. Autorzy badań skupili się na czopkach i pomiarach postrzegania kontrastu pomiędzy czerwonym a zielonym oraz niebieskim a żółtym.
      W badaniach wzięło udział 20 osób w wieku 34–70 lat, u których nie występowały choroby oczu i które prawidłowo widziały kolory. Pomiędzy godziną 8 a 9 rano ich oczy były przez trzy minuty oświetlane za pomocą urządzenia LED przez światło o długości 670 nm. Trzy godziny później zbadano ich postrzeganie kolorów, a u 10 osób badanie powtórzono tydzień później. Średnio widzenie kolorów poprawiło się u badanych o 17% i stan ten utrzymał się przez co najmniej tydzień. U niektórych ze starszych osób doszło do 20-procentowej poprawy widzenia kolorów.
      Kilka miesięcy później, po upewnieniu się, że pozytywny efekt poprzedniego eksperymentu już minął, badanie powtórzono na 6 osobach. Przeprowadzono je w taki sam sposób, ale pomiędzy godzinami 12 a 13. Nie zauważono żadnej poprawy widzenia.
      Profesor Jeffery mówi, że obecnie brakuje na rynku tanich urządzeń do terapii wzroku czerwonym światłem. Istniejące urządzenie mogą zaś kosztować ponad 20 000 USD. Dlatego też uczony rozpoczął współpracę z firmą Planet Lighting UK i pomaga jej stworzyć tanie urządzenie do domowej terapii. Technologia jest prosta i tania, energia fali 670 nm jest niewiele większa od naturalnie otaczającego nas światła. Biorąc to pod uwagę, jestem przekonany, że uda się stworzyć tanie łatwe w użyciu urządzenie do stosowania w domu, stwierdza uczony.
      Naukowcy podkreślają jednak, że przydatne byłyby dodatkowe badania na większej próbce ochotników, gdyż zauważyli, że nawet u osób w podobnym wieku różnica w poprawie wzroku może być znacząca. Być może istnieją jeszcze inne czynniki, które na to wpływają.
      Ze szczegółami badań można zapoznać się na łamach Scientific Reports.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...