Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Najbardziej obfitym i najłatwiej dostępnym źródłem odnawialnej energii jest Słońce. Jednak dotychczas, by wykorzystać jego potencjał, konieczne jest wykonanie wielu kroków pośrednich, które w efekcie pozwolą np. napędzać maszynę dzięki energii pozyskanej z naszej gwiazdy.

Naukowcy z Uniwersytetu Kalifornijskiego w Berkeley stworzyli proste, wodne maszyny napędzane bezpośrednio przez Słońce. Teoretycznie można je skalować tak, by otrzymać pompy generujące energię.

"Słoneczne maszyny" działają dzięki zjawisku napięcia powierzchniowego. Molekuły wody silnie na siebie oddziałują i, jak się okazało, można to oddziaływanie wykorzystać do poruszania obiektów po powierzchni wody. Urządzenia z Berkeley to kawałki przezroczystego plastiku, którego najdłuższa krawędź ma około centymetra. Pokryto je paskami ułożonych wertykalnie węglowych nanorurek. Jeśli teraz na taką maszynę pada światło Słońca, nanorurki się podgrzewają i ogrzewają wodę wokół. To zmniejsza napięcie powierzchniowe z jednej strony kawałka plastiku, który w efekcie jest  odpychany od miejsca o niższym napięciu. Prace nad poruszanymi światłem słonecznym maszynami prowadzili Alex Zettl, profesor fizyki materii skondensowanej oraz profesor chemii i inżynierii chemicznej Jean M. J. Frechet. Profesor Zettl mówi, że warto je kontynuować, gdyż siły napięcia powierzchniowego są bardzo duże, a więc być może uda się je wykorzystać.

Uczeni zademonstrowali dwie maszyny. Pierwsza z nich to łódka z nanorurkami przylepionymi z tyłu. Po oświetleniu nanorurek płynęła ona do przodu. Maksymalne prędkość łódki o długości 1 cm wynosiła 8 centymetrów na sekundę.

Druga z maszyn to prosty wirnik. Do każdego z jego czterech skrzydeł przymocowano z jednej strony nanorurki. Po wystawieniu na działanie światła słonecznego kręcił się on z prędkością około 70 obrotów na minutę.

Zettl i Frechet rozpoczęli swoje eksperymenty od małych obiektów, ponieważ poruszanie ich po wodzie stanowi poważne wyzwanie. W tej skali występujące turbulencje stanowią poważną przeszkodę. Ponadto w nanoskali napięcie powierzchniowe działa silniej niż grawitacja. Obaj uczeni mają nadzieję, że ich prace przyczynią się do powstanie przydatnych w medycynie miniaturowych urządzeń napędzanych laserem i korzystających z napięcia powierzchniowego płynów ustrojowych. Chcieliby też stworzyć nanowirniki do generatorów energii elektrycznej. Planują również wybudowanie dużej łodzi, która, po umieszczeniu z tyłu soczewek i nanorurek, byłaby napędzana Słońcem.

Dean Alhorn, pracujący w NASA nad napędzanym słońcem satelitą NanoSail-D chwali prace swoich kolegów. Zauważa jednak, że muszą jeszcze dowieść, iż siła Słońca i napięcia powierzchniowego jest na tyle duża, by np. pokonać fale na otwartym akwenie.

Share this post


Link to post
Share on other sites

Ciekawy tekst. Energia słoneczna to rzeczywiście fajna sprawa, moja firma dzięki niej oszczędza (mam panele)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zespół naukowców z Wielkiej Brytanii, Australii i USA opisuje na łamach Nature Astronomy wyniki swoich badań nad asteroidami, z których wynika, że ważnym źródłem wody dla formującej się Ziemi był kosmiczny pył. A w procesie powstawania w nim wody główną rolę odegrało Słońce.
      Naukowcy od dawna szukają źródeł wody na Ziemi. Jedna z teorii mówi, że pod koniec procesu formowania się naszej planety woda została przyniesiona przez planetoidy klasy C. Już wcześniej naukowcy analizowali izotopowy „odcisk palca” planetoid typu C, które spadły na Ziemię w postaci bogatych w wodę chondrytów węglistych. Jeśli stosunek wodoru do deuteru byłby w nich taki sam, co w wodzie na Ziemi, byłby to silny dowód, iż to właśnie one były źródłem wody. Jednak uzyskane dotychczas wyniki nie są jednoznaczne. Woda zawarta w chondrytach w wielu przypadkach odpowiadała wodzie na Ziemi, jednak w wielu też nie odpowiadała. Częściej jednak ziemska woda ma nieco inny skład izotopowy niż woda w chondrytach. To zaś oznacza, że oprócz nich musi istnieć w Układzie Słonecznym co najmniej jeszcze jedno źródło ziemskiej wody.
      Naukowcy pracujący pod kierunkiem specjalistów z University of Glasgow przyjrzeli się teraz planetoidom klasy S, które znajdują się bliżej Słońca niż planetoidy C. Przeanalizowali próbki pobrane z asteroidy Itokawa i przywiezione na Ziemię w 2010 roku przez japońską sondę Hayabusa. Dzięki najnowocześniejszym narzędziom byli w stanie przyjrzeć się strukturze atomowej poszczególnych ziaren próbki i zbadać pojedyncze molekuły wody. Wykazali, że pod powierzchnią Itokawy, w wyniku procesu wietrzenia, powstały znaczne ilości wody. Odkrycie to wskazuje, że w rodzącym się Układzie Słonecznym pod powierzchnią ziaren pyłu tworzyła się woda. Wraz z pyłem opadała ona na Ziemię, tworząc z czasem oceany.
      Wiatr słoneczny to głównie strumień jonów wodoru i helu, które bez przerwy przepływają przez przestrzeń kosmiczną. Kiedy jony wodoru trafiały na powierzchnię pozbawioną powietrza, jak asteroida czy ziarna pyłu, penetrowały ją na głębokość kilkudziesięciu nanometrów i tam mogły wpływać na skład chemiczny skład i pyłu. Z czasem w wyniku tych procesów jony wodoru mogły łączyć się z atomami tlenu obecnymi w pyle i skałach i utworzyć wodę.
      Co bardzo ważne, taka woda pochodząca z wiatru słonecznego, składa się z lekkich izotopów. To zaś mocno wskazuje, że poddany oddziaływaniu wiatru słonecznego pył, który opadł na tworzącą się Ziemię, jest brakującym nieznanym dotychczas źródłem wody, stwierdzają autorzy badań.
      Profesor Phil Bland z Curtin University powiedział, że dzięki obrazowaniu ATP (Atom Probe Tomography) możliwe było uzyskanie niezwykle szczegółowego obrazu na głębokość pierwszych 50 nanometrów pod powierzchnią ziaren pyłu Itokawy, który okrąża Słońce w 18-miesięcznych cyklach. Dzięki temu zobaczyliśmy, że ten fragment zwietrzałego materiału zawiera tyle wody, że po przeskalowaniu było by to około 20 litrów na każdy metr sześcienny skały.
      Z kolei profesor John Bradley z University of Hawai‘i at Mānoa przypomniał, że jeszcze dekadę temu samo wspomnienie, że źródłem wody w Układzie Słonecznym może być wietrzenie skał spowodowane wiatrem słonecznym, spotkałoby się z niedowierzaniem. Teraz wykazaliśmy, że woda może powstawać na bieżąco na powierzchni asteroidy, co jest kolejnym dowodem na to, że interakcja wiatru słonecznego z pyłem zawierającym tlen prowadzi do powstania wody.
      Pył tworzący mgławicę planetarną Słońca był poddawany ciągłemu oddziaływaniu wiatru słonecznego. A z pyłu tego powstawały planety. Woda tworzona w ten sposób jest zatem bezpośrednio związana z wodą obecną w układzie planetarnym, dodają autorzy badań.
      Co więcej, odkrycie to wskazuje na obfite źródło wody dla przyszłych misji załogowych. Oznacza to bowiem, ze woda może znajdować się w na pozornie suchych planetach. Jednym z głównych problemów przyszłej załogowej eksploracji kosmosu jest problem znalezienia wystarczających ilości wody. Sądzimy, że ten sam proces wietrzenia, w wyniku którego woda powstała na asteroidzie Itokawa miał miejsce w wielu miejscach, takich jak Księżyc czy asteroida Westa. To zaś oznacza, że w przyszłości astronauci będą mogli pozyskać wodę wprost z powierzchni planet, dodaje profesor Hope Ishii.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W górnych 2 kilometrach skorupy ziemskiej znajduje się około 24 milionów kilometrów sześciennych wody. To w większości woda pitna. Jednak poniżej tego rezerwuaru, zamknięte w skałach, znajdują się kolejne rozległe zasoby wodne, złożone głównie z solanki liczącej sobie setki milionów, a może nawet ponad miliard lat. Najnowsze szacunki pokazują, że zasoby te, wraz z położoną powyżej wodą, stanowią największy rezerwuar wody na Ziemi.
      Dotychczas uważano, że największymi, poza oceanami, rezerwuarami wody na Ziemi są lodowce i lądolody, których objętość wynosi około 30 milionów km3. Okazuje się jednak, że prawdopodobnie musimy zweryfikować swoje przekonania.
      Dość dobrze wiemy, ile wody znajduje się w górnej 2-kilometrowej warstwie skorupy ziemskiej. Jednak zasoby położone poniżej, na głębokości nawet do 10 kilometrów, są znacznie słabiej poznane. Ich oszacowania podjęli się naukowcy z międzynarodowego zespołu, w skład którego wchodzili uczeni z USA, Kanady, Wielkiej Brytanii i Hongkongu.
      Uczeni zbadali strefę „głębokich wód podziemnych”, położonych na głębokości 2–10 kilometrów. W swojej pracy uwzględnili rozkład skał osadowych oraz skrystalizowanych oraz szacunki dotyczące związku porowatości skał z głębokością, na jakiej się znajdują. Szacunki wykazały, że na głębokości poniżej 2 kilometrów znajduje się około 20 milionów km3 wody. Jeśli szacunki te są prawidłowe, to w skorupie ziemskiej, na głębokości do 10 kilometrów zamkniętych jest 44 miliony km3 wody. To zaś oznacza, że wody tej jest więcej, niż wody zamkniętej w lądolodach. Odkrycie takie pozwoli lepiej zrozumieć budowę planety i procesy geochemiczne zachodzące na Ziemi.
      Szacunki te zwiększają nasze rozumienie ilości wody na Ziemi i dodają nowy wymiar do rozumienia cyklu hydrologicznego, mówi Grant Ferguson, hydrolog z University of Saskatchewan.
      Te głęboko położone zasoby wody nie mogą być co prawda wykorzystane w celach spożywczych czy do nawadniania, ale dokładne szacunki ilości wody oraz tego, czy i w jaki sposób jest ona włączona w obieg wody na powierzchni, są potrzebne do planowania takich działań jak produkcja wodoru, składowanie odpadów atomowych czy pobieranie z powietrza i bezpieczne składowanie dwutlenku węgla. Jeśli bowiem chcemy np. bezpiecznie składować pod ziemią odpady atomowe, musimy znaleźć takie miejsce, do którego nie ma dostępu woda, trafiająca później na powierzchnię lub do płytko położonych zbiorników podziemnych. Unikniemy w ten sposób zanieczyszczenia wód, z których korzystamy.
      Głęboko położone zbiorniki wody, te znajdujące się na głębokości poniżej 2 kilometrów, mogą być izolowane od setek milionów czy miliarda lat. Mogą nie mieć żadnego połączenia ze światem zewnętrznym. Są więc kapsułami czasu, dzięki którym możemy lepiej poznać warunki panujące na Ziemi w przeszłości. Mogą też zawierać wciąż aktywne mikroorganizmy sprzed setek milionów lat.
      Naukowcy mogą szacować głęboko położone zasoby wodne obliczając, jak wiele wody może być zamkniętych w skałach. To zaś zależy od porowatości skał. Wcześniejsze szacunki skał znajdujących się na głębokości 2–10 kilometrów skupiały się na skałach krystalicznych, jak granit, które charakteryzują się niską porowatością. Jednak autorzy najnowszych badań dodali do tych szacunków skały osadowe, znacznie bardziej porowate. I stwierdzili, że mogą one przechowywać dodatkowo 8 milionów kilometrów sześciennych wody.
      Jako, że woda ta jest położona głęboko i często wśród skał o niskiej przepuszczalności, w dużej mierze nie jest włączona w cykl hydrologiczny planety. Tym bardziej, że to głównie solanka, która może być o 25% bardziej gęsta od wody morskiej. A to jeszcze bardziej utrudnia jej przedostanie się do wyżej położonych warstw skorupy ziemskiej. Nie jest to jednak całkowicie wykluczone. Różnica ciśnień w obszarach położonych na różnych wysokościach może powodować, że obieg wody sięga naprawdę głęboko. W kilku miejscach Ameryki Północnej udokumentowano obieg wody, w ramach którego woda z powierzchni trafia nawet głębiej niż 2 kilometry w głąb skorupy ziemskiej.
      Najnowsze szacunki bardzo zainteresowały specjalistów badających biosferę. Dotychczas odkryliśmy mikroorganizmy na głębokości 3,6 kilometra. Jeśli gdzieś jest woda w stanie ciekłym, jest też spora szansa na obecność mikroorganizmów. Mogą one żyć dzięki reakcjom chemicznym. Jeśli wokół nich znajdują się odpowiednie pierwiastki, mogą je wykorzystać do wytwarzania energii, mówi mikrobiolog Jennifer Biddle z University of Delaware. Badanie tych głęboko położonych wód może też powiedzieć nam sporo o potencjalnym życiu w innych miejscach Układu Słonecznego. Jeśli i na Marsie znajdują się głęboko położone zbiorniki wodne, może tam być życie. Zatem tego typu habitaty na Ziemi mogą być bardzo dobrymi analogiami innych ciał niebieskich, jak Mars czy Enceladus, księżyc Saturna, który na pewno zawiera wodę w swoim wnętrzu, dodaje Biddle.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy od dawna wiedzą, że duży koronalny wyrzut masy na Słońcu może poważnie uszkodzić sieci energetyczne, doprowadzając do braków prądu, wody, paliwa czy towarów w sklepach. Znacznie mniej uwagi przywiązują jednak do tego, jak takie wydarzenie wpłynie na internet. Jak się okazuje, skutki mogą być równie katastrofalne, a najsłabszym elementem systemu są podmorskie kable łączące kraje i kontynenty.
      Przed kilkunastu laty amerykańskie Narodowe Akademie Nauk przygotowały na zlecenie NASA raport dotyczący skutków wielkiego koronalnego wyrzutu masy, który zostałyby skierowany w stronę Ziemi. Takie wydarzenie mogłoby pozbawić ludzi wody, towarów w sklepach, transportu publicznego i prywatnego, uniemożliwić działanie szpitali i przedsiębiorstw, doprowadzić do wyłączenia elektrowni. Jak wówczas informowali autorzy raportu same tylko Stany Zjednoczone poniosłyby w ciągu pierwszego roku straty rzędu 2 bilionów dolarów. Przywrócenie stanu sprzed katastrofy potrwałoby 4-10 lat.
      Katastrofy naturalne zwykle są najbardziej odczuwane przez najbiedniejsze państwa. Wielki koronalny wyrzut masy jest zaś tym bardziej niebezpieczny, im bardziej rozwinięte państwo i im bardziej uzależnione jest od sieci energetycznej i – jak się okazuje – internetu.
      Koronalne wyrzuty masy to gigantyczne obłoki plazmy, które co jakiś czas są wyrzucane przez Słońce w przestrzeń kosmiczną. Mają one masę miliardów ton i posiadają silne pole magnetyczne, które może uszkadzać satelity, sieci energetyczne i zakłócać łączność radiową.
      Ludzkość nie ma zbyt wielu doświadczeń z tego typu wydarzeniami. W marcu 1989 roku w Kanadzie 6 milionów osób było przez 9 godzin pozbawionych prądu właśnie z powodu burzy na Słońcu. Jednak wiemy, że wyrzuty koronalne mogą być znacznie silniejsze. Najpotężniejsze znane nam tego typu zjawisko to wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak brytyjski astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych.
      Przestały działać telegrafy, a Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety, doszło do kilku pożarów drewnianych budynków telegrafów, igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne widać było nawet w Kolumbii. Jednak wydarzenie to miało miejsce na długo przed rozwojem sieci energetycznych. Obecnie tak silny rozbłysk miałby katastrofalne skutki.
      Podczas zakończonej niedawno konferencji SIGCOMM 2021 profesor Sangeetha Abdu Jyothi z University of California Irvine, wystąpiła z odczytem Solar Superstorms. Planning for an Internet Apocalypse. Przedstawiła w nim wyniki swoich badań nad wpływem wielkiej chmury szybko poruszających się namagnetyzowanych cząstek słonecznych na światowy internet.
      Z badań wynika, że nawet gdyby stosunkowo szybko udało się przywrócić zasilanie, to problemów z internetem doświadczalibyśmy przez długi czas. Dobra wiadomość jest taka, że lokalna i regionalna infrastruktura internetowa nie powinna zbytnio ucierpieć. Światłowody same w sobie są odporne na tego typu wydarzenia. Znacznie gorzej byłoby z przesyłaniem danych w skali całego globu.
      Największe zagrożenie czyha na kable podmorskie. Przesyłają one dane przez tysiące kilometrów, a co 50–150 kilometrów są na nich zainstalowane wzmacniacze. I o ile sam podmorski kabel nie byłby narażony, to wielka burza słoneczna mogłaby uszkodzić te wzmacniacze. Gdy zaś doszłoby do uszkodzenia odpowiednich ich liczby, przesyłanie danych stałoby się niemożliwe. Co więcej, kable podmorskie są uziemiane co setki lub tysiące kilometrów, a to stwarza dodatkowe zagrożenie dla wzmacniaczy. Jakby jeszcze tego było mało, budowa geologiczna morskiego dna jest bardzo różna, i w niektórych miejscach wpływ burzy słonecznej na kable będzie silniejszy niż w innych. Zapomnijmy też o przesyłaniu danych za pomocą satelitów. Wielki rozbłysk na Słońcu może je uszkodzić.
      Obecnie nie mamy modeli pokazujących dokładnie, co mogłoby się stać. Lepiej rozumiemy wpływ koronalnego wyrzutu masy na sieci energetyczne. Jednak one znajdują się na lądach. Jeszcze trudniej jest przewidywać, co może stać się na dnie morskim, mówi Abdu Jyothi.
      Koronalne wyrzuty masy są bardziej niebezpieczne dla wyższych szerokości geograficznych, tych bliższych biegunom. Zatem Polska czy USA ucierpią bardziej niż położony w pobliżu równika Singapur. A Europa i Ameryka Północna będą miały większe problemy z internetem niż Azja.
      Internet zaprojektowano tak, by był odporny na zakłócenia. Gdy dojdzie do awarii w jednym miejscu, dane są automatycznie kierowane inną drogą, by omijać miejsce awarii. Ale jednoczesna awaria w kilku czy kilkunastu kluczowych punktach zdestabilizuje całą sieć. Wszystko zależy od tego, gdzie do niej dojdzie. Wspomniany tutaj Singapur jest hubem dla wielu azjatyckich podmorskich kabli telekomunikacyjnych. Jako, że położony jest blisko równika, istnieje tam mniejsze ryzyko awarii w razie wielkiej burzy słonecznej. Ponadto wiele kabli w regionie jest dość krótkich, rozciągają się z huba w różnych kierunkach. Tymczasem kable przekraczające Atlantyk czy Pacyfik są bardzo długie i położone na wyższych, bardziej narażonych na zakłócenia, szerokościach geograficznych.
      Niestety, podmorskie kable rzadko są zabezpieczane przed skutkami wielkich zaburzeń geomagnetycznych, takich jak burze słoneczne. Nie mamy doświadczenia z takimi wydarzeniami, a właściciele infrastruktury priorytetowo traktują cyberataki czy katastrofy naturalne mające swój początek na Ziemi i to przed nimi zabezpieczają swoje sieci.
      Abdu Jyothi zauważa jednak, że o ile wielkie koronalne wyrzuty masy są niezwykle rzadkie, a jeszcze rzadziej są one skierowane w stronę Ziemi, to stawka jest tutaj bardzo duża. Długotrwałe zaburzenie łączności w skali globalnej miałoby negatywny wpływ niemal na każdy dział gospodarki i niemal każdego człowieka na Ziemi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda to niezwykły płyn. Niezbędny i najbardziej powszechny, a jednocześnie najmniej ją rozumiemy. Ma wiele niezwykłych właściwości, których wciąż nie potrafimy wyjaśnić. Na przykład większość płynów staje się coraz gęstszych w czasie schładzania. Tymczasem woda jest najgęstsza w temperaturze około 4 stopni Celsjusza. Ta jej właściwość powoduje, że lód unosi się na powierzchni, dzięki czemu może istnieć życie. Gdyby bowiem tonął, organizmy w oceanach nie przetrwałyby zimy.
      Woda ma też niezwykle duże napięcie powierzchniowe, dzięki czemu owady mogą po niej chodzi oraz olbrzymią zdolność przechowywania ciepła, co stabilizuje temperaturę oceanu.
      Teraz naukowcy ze SLAC National Accelerator Laboratory, Uniwersytet Stanforda i Uniwersytetu w Sztokholmie przeprowadzili pierwsze bezpośredni obserwacje, które pokazały, jak wzbudzone laserem atomy wodoru w molekułach wody ciągną i pchają sąsiednie molekuły wody. Badania, których wyniki opublikowano na łamach Nature, opisują zjawiska, które mogą leżeć u podstaw niezwykłych właściwości wody. Ich zbadania może pomóc nam w zrozumieniu, w jaki sposób woda pomaga białkom spełniać ich rolę w organizmach żywych.
      Jeden z członków zespołu badawczego, profesor Anders Nilsson z Uniwersytetu w Sztokholmie przypomina, że już od pewnego czasu przypuszczano, iż za wiele właściwości wody mogą odpowiadać te tzw. jądrowe efekty kwantowe. Nasz eksperyment to pierwsze obserwacje tych efektów. Pytanie brzmi, czy rzeczywiście są one zaginionym ogniwem teoretycznych modeli opisujących niezwykłe właściwości wody, mówi uczony.
      W każdej molekule wody znajdziemy jeden atom tlenu i dwa atomy wodoru. Istnieje też cała sieć wiązań wodorowych pomiędzy dodatnio naładowanymi atomami wodoru w jednej molekule i ujemnie naładowanymi atomami tlenu w sąsiednich molekułach. Ta siec utrzymuje całość razem. Dopiero jednak teraz udało się zaobserwować, jak molekuły wody – za pośrednictwem tej sieci – wchodzą w interakcje.
      To pierwsze badania, w których bezpośrednio wykazano, że reakcja sieci wiązań wodorowych na impuls energii w postaci światła lasera zależy od rozkładu atomów wodoru w przestrzeni, który jest z kolei determinowany zasadami mechaniki kwantowej. Od dawna uważano, że to właśnie ona nadaje niezwykłe właściwości wodzie i jej sieci wiązań wodorowych, stwierdza Kelly Gaffney ze SLAC.
      Obserwacje tego typu zjawisk są niezwykle trudne, gdyż ruchy wiązań atomowych są bardzo szybkie i odbywają się w bardzo małej skali. Amerykańsko-szwedzki zespół naukowy poradził sobie z tym problemem dzięki MeV-UED, superszybkiej „kamerze elektronowej“ ze SLAC, która wykrywa niewielki ruchy molekuł rozpraszając na nich strumień elektronów.
      Naukowcy najpierw wygenerowali strumienie wody o średnicy zaledwie 100 nanometrów. To około 1000-krotnie mniej niż średnica włosa. Następnie za pomocą podczerwonego lasera wprawili w drgania molekuły wody tworzące te strumienie. Wtedy do dzieła przystąpił MeV-UED, ostrzeliwując wodę krótkimi wysokoenergetycznymi impulsami elektronów. W ten sposób uzyskano obraz o wysokiej rozdzielczości, który wyglądał jak poklatkowy film, szczegółowo pokazujący, jak molekuły reagują na światło.
      Obraz skupiał się na grupach, na które składały się po trzy molekuły. Dzięki temu naukowcy mogli zaobserwować, jak najpierw atomy wodoru przyciągają do siebie atomy tlenu z sąsiednich molekuł, by za chwilę – dzięki energii uzyskanej z lasera – mocno je odepchnąć, zwiększając odległości pomiędzy molekułami.
      To naprawdę otwiera nowe możliwości w dziedzinie badań nad wodą. W końcu możemy zobaczyć poruszające się wiązania wodorowe. Chcielibyśmy teraz powiązać te ruchy z szerszym obrazem, który może rzucić światło na to, w jaki sposób woda przyczyniła się do powstania i przetrwania życia na ziemi. Możemy też dzięki temu udoskonalić metody pozyskiwania energii odnawialnej, stwierdził Xijie Wang ze SLAC.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Caltech (California Institute of Technology) poinformował właśnie, że od roku 2013 Donald Bren – najbogatszy deweloper w USA – wraz z żoną Brigitte przekazali uczelni ponad 100 milionów dolarów na prace nad pozyskiwaniem energii słonecznej w przestrzeni kosmicznej i przesyłaniem jej na Ziemię. Dzięki nim w roku 2022 lub 2023 w przestrzeń kosmiczną trafi pierwsza testowa instalacja.
      Majątek 89-letniego Brena jest wyceniany na 15–16 miliardów dolarów. Dorobił się olbrzymich pieniędzy na budowie nieruchomości. Jest skrytym człowiekiem, rzadko udziela wywiadów. Przeznacza duże kwoty na działalność charytatywną. Wiadomo, że setkami milionów dolarów wspiera edukację, naukę i ochronę środowiska. W ciągu ostatnich 30 lat przekazał też 220 km2 terenów na potrzeby parków, rezerwatów i terenów rekreacyjnych. O tym, że woli pozostawać w cieniu może świadczyć sam fakt, że o finansowaniu przez Brena Space Solar Power Project poinformowano dopiero po 8 latach.
      Wysoka orbita okołoziemska to bardzo dobre miejsce do pozyskiwania energii słonecznej. Słońce nigdy tam nie zachodzi, nie formują się chmury. Od dawna jest ona przedmiotem zainteresowania inżynierów. Jednak dotychczasowe projekty były nierealistyczne. Zbyt wielkie, by mogły się udać. Zakładały bowiem zbudowanie olbrzymich wielokilometrowych struktur pozyskujących energię, która następnie za pomocą laserów lub mikrofal byłaby przesyłana na Ziemię. Budowa takich struktury wymagałaby startów setek rakiet.
      Tym, czego naprawdę potrzebowaliśmy była zmiana paradygmatu technologicznego, mówi profesor Harry Atwater, kierujący Space Solar Power Project. Zamiast urządzenia, które waży kilogram na metr kwadratowy, możemy obecnie stworzyć system o macie 100-200 gramów na metr kwadratowy i mamy plany zejścia z masą do 10-20 gramów na m2, informuje uczony.
      Największa zmiana w myśleniu zaszła w samej budowie paneli słonecznych. Naukowcy z Caltechu budują modułowe panele. Każde z lekkich galowo-arsenkowych ogniw jest mocowane do „kafelka” o powierzchni 100 cm2. Każdy z „kafelków” – i to właśnie ma być kluczem do sukcesu – jest indywidualną stacją słoneczną, wyposażoną z fotowoltaikę, elektronikę oraz przekaźnik mikrofalowy. „Kafelki” będą łączone w większe moduły o powierzchni kilkudziesięciu metrów kwadratowych, a tysiące takich modułów będą tworzyły heksagonalną stacją o kilkukilometrowej długości. Jednak moduły nie będą ze sobą połączone. Nie będzie ciężkich kabli czy rusztowań.
      Myślimy o tym jak o ławicy ryb. To zestaw identycznych niezależnych elementów latających w formacji, mówi Atwater.
      Transmisja na Ziemię będzie odbywała się za pomocą mikrofal. Sygnały z poszczególnych „kafelków” będą synchronizowane, co pozwoli na wycelowanie ich w naziemny odbiornik bez potrzeby używania ruchomych części. Całość zaś będzie bezpieczna. Promieniowanie mikrofalowe jest promieniowaniem niejonizującym, a gęstość przesyłanej energii będzie taka, jak gęstość energii słonecznej.
      Miną jednak lata, zanim na co dzień będziemy korzystali z tego typu rozwiązań. Wcześniej czy później przesyłanie energii z kosmosu na Ziemię stanie się codziennością. Do optymizmu skłaniają zarówno spadające koszty lotów w kosmos, jak i intensywne prace, prowadzone np. przez agencje kosmiczne z USA, Chin czy Japonii.
      Niewykluczone jednak, że pierwsze urządzenia zasilane w ten sposób nie będą znajdowały się na Ziemi, a w kosmosie. Może się bowiem okazać, że przesyłanie energii mikrofalowej z farm orbitalnych do satelitów czy stacji kosmicznych jest rozwiązaniem bardziej praktycznym, niż konieczność wyposażania satelitów i stacji we własne panele słoneczne.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...