Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Coraz liczniejsze badania dowodzą, że większość biopaliw nie jest tak ekologiczna, jak początkowo sądzono. Naukowcy z University of Minnesota sprawdzili, ile litrów wody pochłania produkcja bioetanolu z kukurydzy.

Dotychczas oceniano, że do wyhodowania kukurydzy i wyprodukowania z niej litra paliwa potrzeba od 263 do 784 litrów wody. Okazuje się jednak, że rozpiętość jest tutaj znacznie większa i waha się w zależności od klimatu oraz infrastruktury w stanie, w którym odbywa się produkcja. Z najnowszych danych, opublikowanych w Environmental Science and Technology wynika, że produkcja litra bioetanolu z kukurydzy pochłania od 5 do 2138 litrów wody. Badania wykazały również, że w latach 2005-2008 w USA produkcja bioetanolu z kukurydzy wzrosła dwukrotnie, a ilość zużywanej w tym celu wody zwiększyła się ponadtrzykrotnie.

Profesor inżynierii biosystemów Sangwon Suh zauważa, że ma to związek z faktem, iż w miarę jak paliwo tego typu zdobywa popularność, areały uprawy kukurydzy rozszerzają się na słabo nawodnione okolice, a więc zużycie wody rośnie.

Suh wraz ze swoimi kolegami przeanalizował dane dotyczące upraw kukurydzy na żywność i na paliwo. Wzięli pod uwagę położenie pól, plony i zużycie wody. Dowiedzieli się dzięki temu, że ponad 80% kukurydzy przeznaczanej na paliwo rośnie w promieniu 64 kilometrów od rafinerii. Kojarząc te dane z mapami dotyczącymi infrastruktury nawadniającej konkretne obszary, byli w stanie wyliczyć zużycie wody na litr paliwa.

W stanach takich jak Ohio, Kentucky czy Iowa, gdzie pola kukurydzy nie muszą być sztucznie nawadniane, zużywa się 5-7 litrów wody na litr paliwa. Jednak rosnąca popularność bioetanolu powoduje, że kukurydza jest coraz częściej uprawiana w Nebrasce, Kolorado czy Kalifornii, gdzie konieczne jest intensywne sztuczne nawadnianie.

David Pimentel z Cornell University uważa, iż najnowsze dane to kolejny gwóźdź do trumny tego rodzaju paliwa. Pimentel jest autorem studium, z którego wynika, że produkcja bioetanolu wymaga zużycia większej ilości energii, niż zapewnia jego spalenie, a nawożenie pól przyczynia się do olbrzymiego zatrucia wód Zatoki Meksykańskiej.

Tymczasem ustawa U.S. Energy Independence and Security Act przewiduje, że produkcja bioetanolu powinna wzrosnąć z obecnych 34 miliardów do 57 miliardów litrów rocznie w 2015 roku.

Z danymi Suha nie zgadza się Geoff Cooper, wiceprezes ds. badań Renewable Fuels Association. Jego zdaniem nie ma mowy o potrojeniu się zużycia wody. Sam Suh jest też optymistą i twierdzi, że genetycznie zmodyfikowana kukurydza oraz ponowne wykorzystanie leżących odłogiem pól pozwolą znacząco zmniejszyć zużycie wody do produkcji bioetanolu.

Pimentel ostrzega: Dla czytającego artykuł konkluzja jest jasna - będzie to wymagało użycia coraz większej ilości wody. Jednak Suh jest z Minnesoty i trzeba być ostrożnym, gdyż Minnesota promuje bioetanol.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wie ktoś może jak wygląda faktyczny skład spalin z benzyny ? W statystycznym aucie spala się jeden litr na około 15 kilometrów drogi. Przyjmuję że jeden litr = 1 kilogram. Zakładam też że z tego kilograma praktycznie 100% materiału jest wydalana poza auto... Tylko w jakiej postaci ? Ile z tego to woda, ile dwutlenek węgla, a ile pozostałych zanieczyszczeń ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak się składa że miałem dość sporo odnośnie spalin na studiach (co najmniej kilka razy miałem to wałkowane), więc mogę trochę info na ten temat przytoczyć ;) Hmm... Na początek, problem jest bardziej złożony niż Ci się wydaje.. A ponadto spaliny nie są tak szkodliwe jak mógłbyś przypuszczać.

 

Po pierwsze - 1 litr benzyny to jakieś 700-770g a nie 1000g (dane z wikipedii) - benzyna ma niższą gęstość niż woda.

 

Po drugie, spalin jest wydalane (masowo) więcej niż zużytego paliwa - z prostej przyczyny: do spalania zużywane jest powietrze z otoczenia (docierającego do samochodu i poprzez filtr powietrza trafiającego do silnika), zatem masa spalin = masa paliwa + masa powietrza do spalenia (zgodnie z prawem zachowania masy).

 

Dla przykładu weźmy sobie spalanie węglowodoru heksanu (niech to będzie nasz model benzyny):

 

C6H14 + 9,5O2  ->  6CO2  + 7H2O

 

M C6H14= 86 g/mol

M O2= 32 g/mol

M CO2= 44 g/mol

M H2O= 18 g/mol

 

Do tego pamiętajmy że w przybliżeniu zawartość O2 w powietrzu = 20%.

 

Do spalenia 750g C6H8 (ma on gęstość niższą niż benzyna - 0,65 g/cm^3) potrzeba by było 2651g O2 - a ponieważ powietrze ma 20% o2, zatem potrzeba by 5x2652= 13256g = 13kg powietrza. Czyli już w tym momencie jeśli cały spalany węglowodór byłby wydalany jako szkodliwy, to szkodliwa część spalin stanowi jedynie 750/13256= 0,057 = 5,7% spalin. Ale w idealnej sytuacji mielibyśmy dwutlenek węgla i wodę, czyli substancje nieszkodliwe (CO2 jest gazem cieplarnianym, ale jest groźny ze względu na swe ilości a nie właściwości, bo promieniowanie cieplne dużo bardziej odbija np metan).

 

W praktyce natomiast, nie spala się jeden węglowodór, ale kilka-kilkanaście, i nie zawsze ma taką piękną budowę - czasem jest to jakiś keton, alkohol (czyli w cząsteczce jest tlen), albo związek zawierający azot czy siarkę. Ale obecne wymagania stawiane paliwom zezwalają na zawartość siarki rzędu 50ppm (ppm - parts per million) czyli w 1 litrze paliwa (~750g) jest jej około 0,0375g (37,5mg).

 

Skład spalin z silnika benzynowego to mniej więcej:

0-750ppm (0,075%)  węglowodorów (HC, niespalone paliwo oraz wtórnie powstałe węglowodory)

0-1050ppm (0,105%)  tlenki azotu (NOx, x=0,5 v 1 v 2)

0,23%              wodór (H2)

0,0-0,51%          tlen (O2)

0,3-0,68%          tlenek węgla (CO)

12,5%              para wodna (H2O)

13,5-16%            dwutlenek węgla(CO2)

reszta (~69,9%)      azot (N2)

 

W przypadku użycia konwertorów katalitycznych (katalizatory trójfunkcyjne, TWC), emisja opisanych związków mieści się w tych niższych wartościach opisanych przedziałów..

 

Wspomnę tu jeszcze o parametrze lambda, używanym przy samochodach z katalizatorami trójfunkcyjnymi. W uproszczeniu to stosunek masowy powietrza do paliwa, który powinien wynosić 14,6 aby spaliny były jak najczystsze (aby dokonane było pełne spalanie; przy niedoborze powietrza powstaje więcej węglowodorów, a przy nadmiarze więcej tlenków azotu). W praktyce stosuje się wzór (powietrze/paliwo)/14,6  - taki wzór określa lambdę. Czyli lamba=1 jest idealna, ale przyjmuje się że może się zawierać w granicach 0,99-1,01. Za utrzymywanie takiej wartości powietrza odpowiada sonda lamba (urządzenie mierzące zawartość tlenu i poprzez komputer samochodowy regulujące dopływ powietrza).

 

Dla podsumowania podam wyliczone ilości substancji podczas spalania benzyny:

 

Ilość benzyny = 1litr =~ 750g = 0,75kg

Ilość powietrza = 750g*14,6 = 10950g = 10,95kg

 

Zatem łącznie musi być (z prawa zachowania masy) 10,95+0,75=11,7kg spalin.

 

HC = 11,7*0,01*0,075 = 0,008775kg = 8,775g

NOx = 11,7*0,01*0,105 = 0,012285kg = 12,285g

H2 = 11,7*0,01*0,23 = 0,02691kg = 26,91g

O2 = 11,7*0,01*0,51 = 0,05967kg = 59,67g

CO = 11,7*0,01*0,68 = 0,07956kg = 79,56g

H2O = 11,7*0,01*12,5 = 1,4625kg = 1462,5g

CO2 = 11,7*0,01*16,0 = 1,872kg = 1872g

N2 = 11,7*0,01*69,9 = 8,1783kg = 8178,3g

 

Teraz jeszcze zestawię ilości składników szkodliwych z nieszkodliwymi:

szkodliwe (HC,NOx,CO) = 100,62g z 11.700g (0,10062kg z 11,70000kg)

nieszkodliwe (H2,O2,H2O,CO2,N2) = 11.599,38g z 11.700g (11,59938kg z 11,70000kg)

 

Imponujące, nieprawdaż? Wychodzi, że samochody są niezwykle ekologicznymi źródłami energii :) Cały problem w tym że są ich dziesiątki milionów, a każdy z nich dziennie zużywa z 5-20l paliwa.

 

Osobnym zagadnieniem są silniki diesel'a, ale o nich już nie będę pisał. Generalnie emitują dużo mniej NOx na rzecz bardzo dużej emisji cząstek sadzy (na których zaadsorbowane są węglowodory, metale i inne związki), które są bardzo szkodliwe ze względu na przenikanie do płuc oraz bycie centrami katalitycznymi (metal na cząstce o mocno rozwiniętej powierzchni właściwej plus węglowodory jako substraty reakcji) różnych niepożądanych w środowisku reakcji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
      Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
      Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
      Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
      Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
      Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
      Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści od biomechaniki z Cornell University obliczyli maksymalną wysokość, z jakiej możemy skoczyć do wody bez większego ryzyka wyrządzenia sobie krzywdy. Uwzględnili rodzaj skoku, a zatem to, która część ciała najpierw styka się z wodą. Woda jest 1000-krotnie gęstsza niż powietrze, więc skacząc przemieszczamy się z bardzo rzadkiego do bardzo gęstego medium, co wiąże się z silnym uderzeniem, mówi profesor Sunghwan Jung, główny autor artykułu opublikowanego na łamach Science Advances.
      Z eksperymentów wynika, że w przypadku osoby, która nie przeszła odpowiedniego treningu, skok do wody z wysokości ponad 8 metrów grozi uszkodzeniami kręgosłupa i karku w sytuacji, gdy jako pierwsza z wodą styka się głowa. Jeśli zaś skoczymy tak, by jako pierwsze z wodą zetknęły się dłonie, to przy skoku z wysokości ponad 12 metrów ryzykujemy uszkodzeniem obojczyka. Z kolei uszkodzenie kolana jest prawdopodobne przy skoku na stopy z wysokości ponad 15 metrów.
      Chcieliśmy sprawdzić, jak pozycja przy skoku do wody wpływa na ryzyko odniesienia obrażeń. Motywowała nas też chęć opracowania ogólnej teorii dotyczącej tego, jak obiekty o różnych kształtach wpadają do wody. Prowadziliśmy więc analizy zarówno kształtu ludzkiego ciała i różnych rodzajów skoków, jak i ciał zwierząt. Mierzyliśmy przy tym oddziałujące siły, dodaje Jung.
      Na potrzeby badań naukowcy wydrukowali trójwymiarowe modele ludzkiej głowy i tułowia, głowy morświna zwyczajnego, dzioba głuptaka zwyczajnego oraz łapy jaszczurki z rodzaju Basiliscus. W ten sposób mogli zbadać różne kształty podczas zetknięcia się z wodą. Wrzucali do niej swoje modele, mierzyli działające siły oraz ich rozkład w czasie. Brali pod uwagę wysokość, z jakiej modele wpadały do wody, a znając działające siły oraz wytrzymałość ludzkich kości, mięśni i ścięgien byli w stanie wyliczyć ryzyko związane ze skakaniem do wody z różnych wysokości. Biomechanika człowieka dysponuje olbrzymią literaturą dotyczącą urazów w wyniku upadków, szczególnie wśród osób starszych, oraz urazów sportowych. Nie znam jednak żadnej pracy dotyczącej urazów podczas skoków do wody, mówi profesor Jung.
      Badania dają nam też wiedzę na temat przystosowania się różnych gatunków zwierząt do nurkowania. Na przykład głuptak zwyczajny ma tak ukształtowany dziób, że może wpadać do wody z prędkością do 24 m/s czyli ponad 86 km/h. Jung i jego zespół od dłuższego czasu badana mechanikę nurkowania zwierząt. Obecnie naukowcy skupiają się na tym, jak lisy nurkują w śniegu.
      Jesteśmy dobrymi inżynierami. Potrafimy zbudować samolot i okręt podwodny. Ale przechodzenie pomiędzy różnymi ośrodkami, co sprawnie robią zwierzęta, nie jest łatwym zadaniem. A to bardzo interesująca kwestia. Inżynierowie chcieliby np. budować drony, które sprawnie poruszałyby się w powietrzu, a później wlatywały pod wodę. Może dzięki naszym badaniom wpadną na odpowiednie rozwiązania. My zaś próbujemy zrozumieć podstawy mechaniki, dodaje Jung.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Laboratorium Centralnym Katowickich Wodociągów pracują sommelierzy, którzy oceniają wodę pod kątem smaku i zapachu. Osoby te musiały przejść testy i szkolenie. Jak można się domyślić, by testy wody były wiarygodne, należy je prowadzić w specjalnych warunkach.
      Gdzie i jak pracuje sommelier od wody
      W pracowni analizy sensorycznej musi być zachowana temperatura 23 stopni Celsjusza, z tolerancją odchylenia wynoszącą 2 stopnie. Stanowiska, przy których sommelierzy przeprowadzają testy, są oddzielone od siebie boksami, pozbawione okien i wyposażone w oświetlenie, którego parametry określone są w normach. Wszystko po to, by nic ich nie rozpraszało i nie wpływało negatywnie na ich zdolności – wyjaśnia analityczka Laboratorium Centralnego Sylwia Morawiecka.
      Jak dodaje, godzinę przed analizą nie powinno się jeść ani używać perfum (dzięki temu nie zaburza się pracy receptorów węchowych i kubków smakowych). W pomieszczeniu, w którym pracują sommelierzy, przed badaniem włączane jest urządzenie pochłaniające wszelkie niepotrzebne zapachy.
      Analitycy określają, zgodnie z wymaganiami zawartymi w polskich normach, podstawowe smaki (słodki, słony, gorzki, metaliczny, kwaśny i umami) i zapachy (ziemisty i apteczny, stęchły/gnilny). Występowanie któregoś z nich nie wyklucza automatycznie przydatności do spożycia; intensywność musi się po prostu mieścić w przyjętych granicach (akceptowalnych dla konsumentów).
      Rozwiązywanie problemów
      Gdy woda zalega w sieci wewnętrznej budynku, jakość wody może się pogorszyć (smak i zapach stają się bardziej wyczuwalne). W takiej sytuacji zalecane jest odpuszczenie wody przed jej użyciem - wyjaśniono na stronie Urzędu Miasta Katowice.
      Zdarza się, że woda w budynku spełnia normy - nie jest skażona bakteriami i ma właściwe parametry mikrobiologiczne i chemiczne, a mimo to jej smak i zapach jest nieakceptowany przez klientów. Przyczyną może być zastanie wody w tym budynku lub stare, skorodowane rury. Sommelier w trakcie analizy smaku i zapachu niejednokrotnie jest w stanie określić, co jest powodem zmiany smaku i zapachu testowanej wody - tłumaczy cytowana przez PAP kierowniczka Laboratorium Centralnego Katowickich Wodociągów Anna Jędrusiak.
      Praca nie dla każdego
      Tylko ok. 50% chętnych ma właściwą wrażliwość sensoryczną. Na początku osoba zdobywająca upoważnienie do wykonywania badań oznaczania smaku i zapachu przechodzi testy. Jędrusiak wyjaśnia, że przygotowywane są „problematyczne” próbki. [...] Czekamy, czy [kandydat na sommeliera] określi, co jest nie tak. Potem jeszcze przechodzi szkolenie. Ale nawet osoba o takich kwalifikacjach ma pewne ograniczenia - może przebadać w jednej serii 6-8 próbek, potem wrażliwość spada, to zjawisko można też zaobserwować podczas wąchania perfum.
      Odnosząc się do pytania, czy sommelierem może zostać osoba paląca papierosy, Jędrusiak stwierdza, że choć nikt jest dyskryminowany, w praktyce palaczom trudniej przejść testy, bo ich wrażliwość jest nieco inna. Obecnie w zespole pracuje jedna osoba paląca.
      Z biegiem czasu i wzrostem doświadczenia zmysły się wyostrzają. Sylwia Morawiecka przyznaje, że zawsze potrafiła dobrze wyczuwać zapachy i smaki, ale dziś umie je oznaczyć na niższym poziomie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W górnych 2 kilometrach skorupy ziemskiej znajduje się około 24 milionów kilometrów sześciennych wody. To w większości woda pitna. Jednak poniżej tego rezerwuaru, zamknięte w skałach, znajdują się kolejne rozległe zasoby wodne, złożone głównie z solanki liczącej sobie setki milionów, a może nawet ponad miliard lat. Najnowsze szacunki pokazują, że zasoby te, wraz z położoną powyżej wodą, stanowią największy rezerwuar wody na Ziemi.
      Dotychczas uważano, że największymi, poza oceanami, rezerwuarami wody na Ziemi są lodowce i lądolody, których objętość wynosi około 30 milionów km3. Okazuje się jednak, że prawdopodobnie musimy zweryfikować swoje przekonania.
      Dość dobrze wiemy, ile wody znajduje się w górnej 2-kilometrowej warstwie skorupy ziemskiej. Jednak zasoby położone poniżej, na głębokości nawet do 10 kilometrów, są znacznie słabiej poznane. Ich oszacowania podjęli się naukowcy z międzynarodowego zespołu, w skład którego wchodzili uczeni z USA, Kanady, Wielkiej Brytanii i Hongkongu.
      Uczeni zbadali strefę „głębokich wód podziemnych”, położonych na głębokości 2–10 kilometrów. W swojej pracy uwzględnili rozkład skał osadowych oraz skrystalizowanych oraz szacunki dotyczące związku porowatości skał z głębokością, na jakiej się znajdują. Szacunki wykazały, że na głębokości poniżej 2 kilometrów znajduje się około 20 milionów km3 wody. Jeśli szacunki te są prawidłowe, to w skorupie ziemskiej, na głębokości do 10 kilometrów zamkniętych jest 44 miliony km3 wody. To zaś oznacza, że wody tej jest więcej, niż wody zamkniętej w lądolodach. Odkrycie takie pozwoli lepiej zrozumieć budowę planety i procesy geochemiczne zachodzące na Ziemi.
      Szacunki te zwiększają nasze rozumienie ilości wody na Ziemi i dodają nowy wymiar do rozumienia cyklu hydrologicznego, mówi Grant Ferguson, hydrolog z University of Saskatchewan.
      Te głęboko położone zasoby wody nie mogą być co prawda wykorzystane w celach spożywczych czy do nawadniania, ale dokładne szacunki ilości wody oraz tego, czy i w jaki sposób jest ona włączona w obieg wody na powierzchni, są potrzebne do planowania takich działań jak produkcja wodoru, składowanie odpadów atomowych czy pobieranie z powietrza i bezpieczne składowanie dwutlenku węgla. Jeśli bowiem chcemy np. bezpiecznie składować pod ziemią odpady atomowe, musimy znaleźć takie miejsce, do którego nie ma dostępu woda, trafiająca później na powierzchnię lub do płytko położonych zbiorników podziemnych. Unikniemy w ten sposób zanieczyszczenia wód, z których korzystamy.
      Głęboko położone zbiorniki wody, te znajdujące się na głębokości poniżej 2 kilometrów, mogą być izolowane od setek milionów czy miliarda lat. Mogą nie mieć żadnego połączenia ze światem zewnętrznym. Są więc kapsułami czasu, dzięki którym możemy lepiej poznać warunki panujące na Ziemi w przeszłości. Mogą też zawierać wciąż aktywne mikroorganizmy sprzed setek milionów lat.
      Naukowcy mogą szacować głęboko położone zasoby wodne obliczając, jak wiele wody może być zamkniętych w skałach. To zaś zależy od porowatości skał. Wcześniejsze szacunki skał znajdujących się na głębokości 2–10 kilometrów skupiały się na skałach krystalicznych, jak granit, które charakteryzują się niską porowatością. Jednak autorzy najnowszych badań dodali do tych szacunków skały osadowe, znacznie bardziej porowate. I stwierdzili, że mogą one przechowywać dodatkowo 8 milionów kilometrów sześciennych wody.
      Jako, że woda ta jest położona głęboko i często wśród skał o niskiej przepuszczalności, w dużej mierze nie jest włączona w cykl hydrologiczny planety. Tym bardziej, że to głównie solanka, która może być o 25% bardziej gęsta od wody morskiej. A to jeszcze bardziej utrudnia jej przedostanie się do wyżej położonych warstw skorupy ziemskiej. Nie jest to jednak całkowicie wykluczone. Różnica ciśnień w obszarach położonych na różnych wysokościach może powodować, że obieg wody sięga naprawdę głęboko. W kilku miejscach Ameryki Północnej udokumentowano obieg wody, w ramach którego woda z powierzchni trafia nawet głębiej niż 2 kilometry w głąb skorupy ziemskiej.
      Najnowsze szacunki bardzo zainteresowały specjalistów badających biosferę. Dotychczas odkryliśmy mikroorganizmy na głębokości 3,6 kilometra. Jeśli gdzieś jest woda w stanie ciekłym, jest też spora szansa na obecność mikroorganizmów. Mogą one żyć dzięki reakcjom chemicznym. Jeśli wokół nich znajdują się odpowiednie pierwiastki, mogą je wykorzystać do wytwarzania energii, mówi mikrobiolog Jennifer Biddle z University of Delaware. Badanie tych głęboko położonych wód może też powiedzieć nam sporo o potencjalnym życiu w innych miejscach Układu Słonecznego. Jeśli i na Marsie znajdują się głęboko położone zbiorniki wodne, może tam być życie. Zatem tego typu habitaty na Ziemi mogą być bardzo dobrymi analogiami innych ciał niebieskich, jak Mars czy Enceladus, księżyc Saturna, który na pewno zawiera wodę w swoim wnętrzu, dodaje Biddle.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Woda to niezwykły płyn. Niezbędny i najbardziej powszechny, a jednocześnie najmniej ją rozumiemy. Ma wiele niezwykłych właściwości, których wciąż nie potrafimy wyjaśnić. Na przykład większość płynów staje się coraz gęstszych w czasie schładzania. Tymczasem woda jest najgęstsza w temperaturze około 4 stopni Celsjusza. Ta jej właściwość powoduje, że lód unosi się na powierzchni, dzięki czemu może istnieć życie. Gdyby bowiem tonął, organizmy w oceanach nie przetrwałyby zimy.
      Woda ma też niezwykle duże napięcie powierzchniowe, dzięki czemu owady mogą po niej chodzi oraz olbrzymią zdolność przechowywania ciepła, co stabilizuje temperaturę oceanu.
      Teraz naukowcy ze SLAC National Accelerator Laboratory, Uniwersytet Stanforda i Uniwersytetu w Sztokholmie przeprowadzili pierwsze bezpośredni obserwacje, które pokazały, jak wzbudzone laserem atomy wodoru w molekułach wody ciągną i pchają sąsiednie molekuły wody. Badania, których wyniki opublikowano na łamach Nature, opisują zjawiska, które mogą leżeć u podstaw niezwykłych właściwości wody. Ich zbadania może pomóc nam w zrozumieniu, w jaki sposób woda pomaga białkom spełniać ich rolę w organizmach żywych.
      Jeden z członków zespołu badawczego, profesor Anders Nilsson z Uniwersytetu w Sztokholmie przypomina, że już od pewnego czasu przypuszczano, iż za wiele właściwości wody mogą odpowiadać te tzw. jądrowe efekty kwantowe. Nasz eksperyment to pierwsze obserwacje tych efektów. Pytanie brzmi, czy rzeczywiście są one zaginionym ogniwem teoretycznych modeli opisujących niezwykłe właściwości wody, mówi uczony.
      W każdej molekule wody znajdziemy jeden atom tlenu i dwa atomy wodoru. Istnieje też cała sieć wiązań wodorowych pomiędzy dodatnio naładowanymi atomami wodoru w jednej molekule i ujemnie naładowanymi atomami tlenu w sąsiednich molekułach. Ta siec utrzymuje całość razem. Dopiero jednak teraz udało się zaobserwować, jak molekuły wody – za pośrednictwem tej sieci – wchodzą w interakcje.
      To pierwsze badania, w których bezpośrednio wykazano, że reakcja sieci wiązań wodorowych na impuls energii w postaci światła lasera zależy od rozkładu atomów wodoru w przestrzeni, który jest z kolei determinowany zasadami mechaniki kwantowej. Od dawna uważano, że to właśnie ona nadaje niezwykłe właściwości wodzie i jej sieci wiązań wodorowych, stwierdza Kelly Gaffney ze SLAC.
      Obserwacje tego typu zjawisk są niezwykle trudne, gdyż ruchy wiązań atomowych są bardzo szybkie i odbywają się w bardzo małej skali. Amerykańsko-szwedzki zespół naukowy poradził sobie z tym problemem dzięki MeV-UED, superszybkiej „kamerze elektronowej“ ze SLAC, która wykrywa niewielki ruchy molekuł rozpraszając na nich strumień elektronów.
      Naukowcy najpierw wygenerowali strumienie wody o średnicy zaledwie 100 nanometrów. To około 1000-krotnie mniej niż średnica włosa. Następnie za pomocą podczerwonego lasera wprawili w drgania molekuły wody tworzące te strumienie. Wtedy do dzieła przystąpił MeV-UED, ostrzeliwując wodę krótkimi wysokoenergetycznymi impulsami elektronów. W ten sposób uzyskano obraz o wysokiej rozdzielczości, który wyglądał jak poklatkowy film, szczegółowo pokazujący, jak molekuły reagują na światło.
      Obraz skupiał się na grupach, na które składały się po trzy molekuły. Dzięki temu naukowcy mogli zaobserwować, jak najpierw atomy wodoru przyciągają do siebie atomy tlenu z sąsiednich molekuł, by za chwilę – dzięki energii uzyskanej z lasera – mocno je odepchnąć, zwiększając odległości pomiędzy molekułami.
      To naprawdę otwiera nowe możliwości w dziedzinie badań nad wodą. W końcu możemy zobaczyć poruszające się wiązania wodorowe. Chcielibyśmy teraz powiązać te ruchy z szerszym obrazem, który może rzucić światło na to, w jaki sposób woda przyczyniła się do powstania i przetrwania życia na ziemi. Możemy też dzięki temu udoskonalić metody pozyskiwania energii odnawialnej, stwierdził Xijie Wang ze SLAC.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...