Jump to content
Forum Kopalni Wiedzy

Recommended Posts

O tym, że do prawidłowego rozwoju połączeń nerwowych konieczna jest zarówno stymulacja w ciągu dnia, jak i regeneracja w czasie snu, nie trzeba przekonywać chyba nikogo. Nigdy dotąd nie opisano jednak zbyt dokładnie mechanizmu stojącego za tym zjawiskiem. Przełomu dokonali badacze z Uniwersytetu Wisconsin.

Jak twierdzą autorzy studium, cykliczny charakter procesu wykształcania synaps, czyli połączeń pomiędzy neuronami, wynika z przyrostu ilości białek w ciągu dnia i ich degradacji, zachodzącej w czasie snu. Wiele wskazuje na to, że wielokrotne powtarzanie tego procesu pozwala na "zoptymalizowanie" pracy synaps.

W swoich badaniach specjaliści z Wisconsin próbowali udowodnić tzw. teorię homeostazy synaptycznej. Głosi ona, że za dnia synapsy rozwijają się najszybciej dzięki bodźcom docierającym ze świata wewnętrznego, lecz w nocy dochodzi do ich "odświeżenia" drogą degradacji niektórych elementów wchodzących w ich skład. Miałoby to służyć optymalizacji zużycia energii, gdyż zbyt rozbudowane połączenia byłyby niezwykle energochłonne.

Eksperyment przeprowadzono na muszkach owocowych (Drosophila melanogaster). Za pomocą specjalnej wytrząsarki badacze pozbawiali je snu, a następnie badali ich mózgi pod względem zawartości pięciu białek biorących udział w komunikacji synaptycznej.

Uniemożliwianie muszkom zaśnięcia powodowało zwiększenie zawartości badanych protein. W grupie kontrolnej, złożonej z przedstawicieli D. melanogaster którym nie zaburzano snu, poziom tych samych białek był obniżony aż o 30-40%. Jak szacują autorzy studium, miało to na celu "uporządkowanie" połączenia i umożliwienie mózgowi zbierania nowych informacji po przebudzeniu. Owady pozbawione snu nie miały możliwości reorganizacji synaps.

Wszyscy wiemy, że sen jest konieczny dla prawidłowego funkcjonowania naszych mózgów, uczenia się każdego dnia nowych rzeczy, a także, w niektórych przypadkach, do utrwalania wspomnień zebranych w ciągu dnia, podsumowuje rezultaty doświadczenia jego współautorka, dr Chiara Cirelli. Podczas snu, jak sądzimy, większość synaps, lub nawet wszystkie z nich, zostaje zredukowanych - pod koniec snu najsilniejsze synapsy zmniejszają się, zaś te najmniejsze mogą nawet zaniknąć.

Wiele wskazuje na to, że wyniki eksperymentu potwierdzają prawdziwość teorii homeostazy synaptycznej. Jak tłumaczy dr Cirelli, nasze mózgi przyjmują każdego dnia wiele nieistotnych informacji, które nie mają żadnego praktycznego zastosowania. Jedną z funkcji snu jest w związku z tym "uporządkowanie" synaps z niepotrzebnych danych, dzięki czemu możliwe jest przechowanie nowych, bardziej przydatnych wiadomości. Cykliczne następowanie po sobie okresów uczenia się oraz snu służy więc optymalizacji budowy i "zawartości" synaps.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Ludzie, którzy ucinają sobie długie drzemki w ciągu dnia albo przesypiają więcej godzin nocą, mogą być bardziej narażeni na udar.
      Naukowcy zauważyli, że w przypadku osób, które regularnie ucinały sobie w ciągu dnia drzemki trwające ponad 90 min, prawdopodobieństwo wystąpienia udaru było o 25% wyższe niż u ludzi, którzy regularnie odbywali drzemki trwające 1-30 min. Badani, którzy nie drzemali lub w przypadku których drzemki trwały 31 min-1 godz., nie byli bardziej zagrożeni udarem niż osoby drzemiące 1-30 min.
      Potrzeba więcej badań, by zrozumieć, w jaki sposób odbywanie dłuższych drzemek i przesypianie nocą większej liczby godzin może być powiązane z podwyższonym ryzykiem udaru. Wcześniejsze badania wykazały jednak, że u dłużej śpiących/drzemiących występują niekorzystne zmiany w poziomie cholesterolu i zwiększony obwód w talii, a to dwa czynniki ryzyka udaru - podkreśla dr Xiaomin Zhang z Huazhong University of Science and Technology. Poza tym długie drzemki i nocny sen mogą sugerować ogólnie nieaktywny tryb życia, co także wiąże się z podwyższonym ryzykiem udaru - dodaje.
      Badanie objęło 31.750 Chińczyków w średnim wieku 62 lat. Dotąd żaden z ochotników nie miał udaru ani poważnych problemów z sercem. Losy badanych śledzono średnio przez 6 lat. W tym czasie odnotowano 1557 udarów.
      Uczestników studium pytano o nawyki dot. snu i drzemek, które jak wyjaśnia Zhang, są w Chinach czymś powszechnym; okazało się, że 8% ludzi ucinało sobie drzemki trwające ponad 90 min, a 24% ujawniło, że śpi 9 lub więcej godzin.
      Autorzy raportu z pisma Neurology zauważyli, że ochotnicy śpiący nocą 9 lub więcej godzin o 23% częściej miewali w trakcie trwania studium udar niż osoby przesypiające nocą od 7 do mniej niż 8 godzin. Ludzie śpiący mniej niż 7 godzin lub między 8 a mniej niż 9 godzin nie byli bardziej zagrożeni udarem niż ochotnicy śpiący o 7 do mniej niż 8 godzin/noc.
      Badani będący miłośnikami zarówno długich drzemek, jak i długiego snu nocą byli aż o 85% bardziej zagrożeni udarem niż osoby drzemiące i śpiące przez umiarkowanie długi czas.
      Akademicy pytali też ludzi o jakość snu. Stwierdzili, że badani, którzy mówili, że śpią źle, o 29% częściej mieli udar w trakcie studium, w porównaniu do osób uznających jakość swego snu za dobrą.
      Podczas analiz wzięto poprawkę na różne potencjalnie istotne czynniki, np. nadciśnienie, cukrzycę i palenie.
      Uzyskane wyniki podkreślają znaczenie umiarkowania w zakresie długości drzemek i nocnego snu oraz podtrzymywania dobrej jakości snu, zwłaszcza u osób w średnim wieku i seniorów.
      Zhang dodaje, że badanie jego zespołu na charakter korelacyjny i nie wskazuje na związki przyczynowo-skutkowe między długim spaniem/drzemaniem i udarem.
      Ograniczeniem badania jest fakt, że dane na temat drzemek i snu pochodziły z kwestionariusza, a nie z pomiarów. Nie zbierano też informacji dot. zaburzeń snu, np. chrapania i bezdechu. Istnieje też możliwość, że skoro studium objęło wyłączenie starszych, zdrowych Chińczyków, uzyskane wyniki nie odnoszą się do innych grup.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kolorado w Boulder odkryli, w jaki sposób zbyt krótki sen szkodzi zdrowiu sercowo-naczyniowemu.
      Okazuje się, że sen krótszy niż 7 godzin obniża poziom 3 miRNA we krwi (miRNA to jednoniciowa cząsteczka RNA, która reguluje ekspresję genów). Wcześniej wykazano, że hamują one białka zapalne.
      Nasze badanie wskazuje na nowy mechanizm, za pośrednictwem którego sen wpływa na stan serca i ogólną fizjologię - podkreśla prof. Christopher DeSouza.
      W jednym z wcześniejszych badań DeSouza ustalił, że mężczyźni, którzy śpią 6 godzin, mają dysfunkcyjne komórki śródbłonka i ich naczynia nie kurczą się i nie rozkurczają tak dobrze, jak naczynia osób przesypiających wystarczającą liczbę godzin.
      Czynniki leżące u podłoża tej dysfunkcji nie są jednak dobrze poznane.
      Amerykanie zaznaczają, że dokładna rola krążących miRNA i ich wpływ na układ sercowo-naczyniowy cieszą się ostatnio dużym zainteresowaniem badaczy. Rozwijane są leki na różne choroby, w tym na nowotwory, które mają korygować niewłaściwe sygnatury miRNA.
      One są jak hamulce komórkowe, dlatego jeśli brakuje właściwych miRNA, może to mieć ogromny wpływ na zdrowie komórki.
      W ramach pierwszego badania dot. wpływu niedoboru snu na sygnatury krążącego miRNA zespół DeSouzy pobrał próbki krwi od 24 zdrowych kobiet i mężczyzn w wieku 44-62 lat. Wypełniali oni kwestionariusze opisujące ich zwyczaje senne, dlatego wiadomo było, że połowa przesypia 7-8,5 godziny, a druga połowa 5-6,8 godziny.
      Naukowcy mierzyli poziom 9 miRNA, które wcześniej powiązano ze stanem zapalnym, funkcjonowaniem immunologicznym czy zdrowiem naczyniowym.
      Okazało się, że osoby z niedoborem snu miały o 40-60% niższy poziom 3 krążących miRNA: miR-125A, miR-126 i miR-146a (wcześniej wykazano, że hamują one białka zapalne).
      Nie jest jasne, czemu 7 lub 8 wydają się "cyframi magicznymi". Jest jednak możliwe, że ludzie potrzebują 7 godzin snu, by podtrzymać poziom ważnych regulatorów fizjologicznych, takich jak miRNA.
      Obecnie trwają badania, które mają pokazać, czy wprowadzenie zdrowych nawyków sennych może odtworzyć zdrowe stężenia miRNA.
      DeSouza dodaje, że niewykluczone, że w przyszłości krążące miRNA będą markerami chorób sercowo-naczyniowych u osób z niewystarczającą ilością snu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Subiektywna jakość snu poprawia się z wiekiem. Podczas wywiadu telefonicznego najmniej skarg dotyczących zaburzeń snu i zmęczenia w dzień zgłaszały osoby w wieku osiemdziesięciu kilku lat (Sleep).
      Zespół doktora Michaela Grandnera z University of Pennsylvania przeprowadził wywiady telefoniczne ze 155877 dorosłymi. Pytano ich nie tylko o zagadnienia związane ze snem, ale również o wykształcenie, rasę, dochód, depresyjność, ogólny stan zdrowia oraz kiedy przechodzili ostatnią kontrolę lekarską.
      Problemy zdrowotne oraz depresja były, oczywiście, związane z problemami ze snem, a kobiety miały więcej zastrzeżeń do jakości odpoczynku nocnego i samopoczucia w ciągu dnia, ale poza okresowym pogorszeniem snu po czterdziestce (także wyraźniej zaznaczonym u pań) naukowcy zaobserwowali stały wzrost subiektywnej jakości snu. Po wzięciu poprawki na depresję i stan zdrowia, obserwowany w ramach wcześniejszych studiów unikatowy wzorzec zanikał.
      Nawet jeśli sen starszych Amerykanów jest gorszy niż młodszych dorosłych, odczucia z nim związane stale poprawiają się z wiekiem. Wygląda więc na to, że o ile choroby mają związek z czasem i zaburzeniami snu, o tyle wpływ samego wieku jest mitem.
      Obrót wydarzeń był dla naukowców zaskakujący, ponieważ mając na uwadze wyniki dotychczasowych badań w laboratoriach snu, zespół Grandnera miał nadzieję potwierdzić odwrotną zależność - że jakość snu spada z wiekiem.
    • By KopalniaWiedzy.pl
      Pod nieobecność biglikanu - proteoglikanu występującego w śródmiąższu oraz na powierzchni komórek chrząstek, kości i skóry - synapsy płytki nerwowo-mięśniowej myszy zaczynają się rozpadać ok. 5 tyg. po narodzinach.
      Wprowadzenie biglikanu do hodowli komórkowej pomagało ustabilizować niedawno powstałe synapsy. Naukowcy z Brown University zaznaczają, że ich odkrycia będzie można wykorzystać w terapii stwardnienia zanikowego bocznego (ang. amyotrophic lateral sclerosis, ALS) czy rdzeniowego zaniku mięśni (ang. spinal muscular atrophy, SMA).
      Wcześniejsze badania pokazały, że biglikan zapobiega utracie funkcji mięśni w dystrofii mięśniowej Duchenne'a. Teraz okazuje się, że jest także kluczowym graczem w procesie podłączania nerwów do mięśni.
      To, co płytki motoryczne robią sekunda po sekundzie, jest istotne dla kontrolowania przez mózg ruchów, a także dla długoterminowego zdrowia zarówno mięśni, jak i neuronów ruchowych - opowiada Justin Fallon.
      W ramach poprzednich badań Fallon ustalił, że u myszy z tą samą mutacją co u pacjentów z dystrofią Duchenne'a biglikan wspiera aktywność utrofiny - białka znacznie ograniczającego degradację mięśni. Ponieważ ma ona podobną budowę do dystrofiny, której chorzy nie wytwarzają, przejmuje jej zadania.
      W ramach najnowszego studium Amerykanie odkryli, że biglikan wiąże się i pomaga aktywować enzym zwany MuSK. Działa on jak główny regulator innych białek, które tworzą i stabilizują płytkę nerwowo-mięśniową. U zmodyfikowanych genetycznie myszy, u których nie dochodziło do ekspresji biglikanu, płytki nerwowo-mięśniowa początkowo powstawały, ale 5 tygodni po porodzie z dużym prawdopodobieństwem rozpadały się. Eksperymenty pokazały, że u gryzoni "bezglikanowych" aż 80% synaps należało uznać za niestabilne. U zwierząt tych wykryto więcej anomalii, np. nieprawidłowo rozmieszczone receptory czy dodatkowe fałdy błony podsynaptycznej. Sądzimy, że te dodatkowe fałdy są pozostałościami wcześniejszych miejsc synaptycznych.
      Fallon i inni wyliczyli, że u myszy pozbawionych biglikanu poziom MuSK w synapsach płytki ruchowej był 10-krotnie niższy niż w grupie kontrolnej.
    • By KopalniaWiedzy.pl
      Komórki gleju pełnią wiele różnych funkcji, m.in. stanowią zrąb dla neuronów mózgu, chronią je, odżywiają czy współtworzą barierę krew-mózg. Teraz okazało się, że nie są zwykłym klejem (ich nazwa pochodzi od gr. glia - klej), ale w znacznym stopniu odpowiadają za plastyczność mózgu. Wpływają na działanie synaps i w ten sposób pomagają segregować informacje potrzebne do uczenia.
      Komórki gleju są jak nadzorcy. Regulując synapsy, kontrolują przepływ danych między neuronami i oddziałują na przetwarzanie informacji oraz proces uczenia - tłumaczy Maurizio De Pittà, doktorant z Uniwersytetu w Tel Awiwie. Opiekunem naukowym De Pitty był prof. Eshel Ben-Jacob. Współpracując z kolegami z USA i Francji, student stworzył pierwszy na świecie model komputerowy, uwzględniający wpływ gleju na synaptyczny transfer danych.
      De Pittà i inni domyślali się, że glej może odgrywać ważną rolę w pamięci i uczeniu, ponieważ tworzące go komórki występują licznie zarówno w hipokampie, jak i korze mózgowej. Na każdy neuron przypada tam od 2 do 5 komórek gleju. Aby potwierdzić swoje przypuszczenia, naukowcy zbudowali model, który uwzględniał wyniki wcześniejszych badań eksperymentalnych.
      Wiadomości przesyłane w sieciach mózgu powstają w neuronach, ale glej działa jak moderator decydujący, które informacje zostaną przesłane i kiedy. Może albo wywołać przepływ informacji, albo zwolnić aktywność synaps, gdy staną się nadmiernie pobudzone. Jak nadmienia prof. Ben-Jacob, wygląda na to, że glej jest dyrygentem, który dąży do optymalnego działania mózgu.
      Wbrew pozorom, przydatność modelu De Pitty nie ogranicza się wyłącznie do lepszego zdefiniowania funkcji gleju, ponieważ może zostać wykorzystany np. w mikrochipach, które naśladują sieci występujące w mózgu czy podczas badań nad padaczką i chorobą Alzheimera. W przypadku epilepsji glej wydaje się nie spełniać funkcji modulujących, a w przebiegu demencji nie pobudza przekazywania danych.
×
×
  • Create New...