Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Intel zyskuje i traci?

Recommended Posts

Z danych iSuppli wynika, że w 2008 roku Intel w każdym kolejnym kwartale umacniał swoją rynkową pozycję. Obecnie do koncernu należy 81,8 procenta rynku mikroprocesorów.

Ten sukces firma w sporej mierze zawdzięcza udanemu procesorowi Atom, który znajdziemy w większości nowych netbooków. Tymczasem w roku 2008 sprzedaż tego typu komputerów wzrosła o ponad 2000% w porównaniu z rokiem poprzednim. iSuppli przewiduje, że w roku bieżącym będziemy mieli do czynienia z kolejnym, tym razem 68,5-procentowym wzrostem.

Część analityków uważa, że sukces Atoma obraca się przeciwko Intelowi. Zdecydowana większość klientów, którzy kupili netbooki, kupiłaby notebooki, gdyby nie pojawiła się nowa kategoria komputerów. Tymczasem w notebookach montowane są inne, droższe procesory, z których Intel ma większy zysk. Z tego też powodu Robert Catellano, prezes The Information Network uważa, że, gdyby nie netbooki, Intel miałby o 1,14 miliarda dolarów większe wpływy. Jego zdaniem w bieżącym roku wpływy Intela będą o 2,16 miliarda USD niższe, niż mogłyby być.

Wzrost udziałów Intela odbywał się kosztem jego konkurentów. Z szacunków wynika, że, biorąc pod uwagę wpływy w dolarach, Intel zyskał w ubiegłym roku 1,6% rynku, AMD straciło 1,2%, a pozostali producenci stracili 0,5%.

Matthew Wilkins, główny analityk iSuppli uważa, że pomimo straty rynku AMD znajduje się obecnie w lepszej sytuacji niż na początku ubiegłego roku. Firma dokonała znaczącej restrukturyzacji i rozpoczęła dostarczanie procesorów wykonanych w technologii 45 nanometrów, co daje jej solidniejsze podstawy działania.

Największymi przegranymi są inni producenci niż Intel i AMD. Obaj giganci mają w sumie 92,5% rynku. Od roku 2006 ich udziały zwiększyły się o 1,6% i o tyle samo spadły udziały mniejszych konkurentów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Od dekad elastyczna elektronika była niewielką niszą. Teraz może być gotowa, by wejść do mainstream'u, stwierdził Rakesh Kumar, lider zespołu, który stworzył plastikowy procesor. O elektronice zintegrowanej w praktycznie każdym przedmiocie, od podkoszulków poprzez butelki po owoce, słyszymy od lat. Dotychczas jednak plany jej rozpowszechnienia są dalekie od realizacji, a na przeszkodzi stoi brak elastycznego, plastikowego, wydajnego i taniego procesora, który można by masowo produkować.
      Wiele przedsiębiorstw próbowało stworzyć takie urządzenie i im się nie udało. Według naukowców z amerykańskiego University of Illinois Urbana-Champaign i specjalistów z brytyjskiej firmy PragmatIC Semiconductor, problem w tym, że nawet najprostszy mikrokontroler jest zbyt złożony, by można go było masowo wytwarzać na plastikowym podłożu.
      Amerykańsko-brytyjski zespół zaprezentował właśnie uproszczony, ale w pełni funkcjonalny, plastikowy procesor, który można masowo produkować bardzo niskim kosztem. Przygotowano dwie wersje procesora: 4- i 8-bitową. Na substracie z 4-bitowymi układami, których koszt masowej produkcji liczyłby się dosłownie w groszach, działa 81% procesorów. To wystarczająco dobry wynik, by wdrożyć masową produkcję.
      Procesory wyprodukowano z cienkowarstwowego tlenku indowo-galowo-cynkowego (IGZO), dla którego podłożem był plastik. Innowacja polegała zaś na stworzeniu od podstaw nowej mikroarchitektury – Flexicore.Musiała być maksymalnie uproszczona, by sprawdziła się w na plastiku. Dlatego zdecydowano się na układy 4- i 8-bitowe zamiast powszechnie wykorzystywanych obecnie 16- i 32-bitowych. Naukowcy rozdzielili moduły pamięci przechowującej instrukcje od pamięci przechowującej dane. Zredukowano również liczbę i stopień złożoności instrukcji, jakie procesor jest w stanie wykonać. Dodatkowym uproszczeniem jest wykonywanie pojedynczej instrukcji w jednym cyklu zegara.
      W wyniku wszystkich uproszczeń 4-bitowy FlexiCore składa się z 2104 podzespołów. To mniej więcej tyle samo ile tranzystorów posiadał procesor Intel 4004 z 1971 roku. I niemal 30-krotnie mniej niż konkurencyjny PlasticARM zaprezentowany w ubiegłym roku. Uproszczenie jest więc ogromne. Stworzono też procesor 8-bitowy, jednak nie sprawuje się on tak dobrze, jak wersja 4-bitowa.
      Obecnie trwają testy plastikowych plastrów z procesorami. Są one sprawdzane zarówno pod kątem wydajności, jak i odporności na wyginanie. Jednocześnie twórcy procesorów prowadzą prace optymalizacyjne, starając się jak najlepiej dostosować architekturę do różnych zadań. Jak poinformował Kumar, badania już wykazały, że można znacznie zredukować pobór prądu, nieco zbliżając do siebie poszczególne bramki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Prowadzone przez wiele lat badania Age-Related Eye Disease Studies (AREDS i AREDS2) wykazały, że odpowiednie suplementy spowalniają postęp zwyrodnienia plamki żółtej (AMD) najpowszechniejszej przyczyny utraty wzroku w starszym wieku. Naukowcy z Narodowych Instytuów Zdrowia (NIH) przeanalizowali dane z 10 lat AREDS2. Wykazali, że suplement, w którym beta-karoten zastąpili luteiną i zeaksantyną nie tylko zmniejsza ryzyko nowotworu płuc – osiągnięto to dzięki pozbyciu się beta-karotenu – ale bardziej efektywnie zmniejsza ryzyko AMD niż suplement zawierający beta-karoten.
      Dwa wcześniejsze wspierane przez NIH badania wykazały, że beta-karoten zwiększa ryzyko raka płuc u palaczy. Dlatego też naszym celem w badania AREDS2 było opracowanie równie efektywnej formuły dla każdego, niezależnie od tego, czy jest palaczem, czy też nie, mówi główna autorka raportu, doktor Emily Chew, dyrektor Wydziału Epidemiologii i Zastosowań Klinicznych w Narodowym Instytucie Oka (National Eye Institute, NEI). Prowadzone przez 10 lat badania wykazały, że nowy skład jest bardziej bezpieczny i w większym stopniu spowalnia postępy AMD.
      Oryginalne badania AREDS rozpoczęto w 1996 roku. Wykazały one, że suplement składający się z 500 mg witaminy C, 400 jednostek witaminy E, 2 mg miedzi, 80 mg cynku i 15 mg beta-karotenu znacząco spowalnia postępy AMD od postaci umiarkowanej do zaawansowanej. Jednak prowadzone jednocześnie dwa inne badania wykazały, że osoby, które palą papierosy i przyjmują beta-karoten są narażone na znacznie większe niż spodziewane ryzyko raka płuc.
      W 2006 roku rozpoczęły się badania AREDS2, w ramach których beta-karoten z AREDS zastąpiono 10 mg luteiny i 2 mg zeaksantyny. Luteina i zeaksantyna to antyoksydanty obecne w siatkówce. Grupą użytą do porównania w AREDS2 były osoby, które nigdy nie paliły lub rzuciły palenie. Osobom tym podawano pierwotną formułę, z beta-karotenem. Po pięciu latach badań stwierdzono, że luteina i zeaksantyna nie zwiększają ryzyka raka płuc, a nowa formuła zmniejsza ryzyko AMD o około 26%. Pod koniec badań wszystkim uczestnikom AREDS2 zaoferowano suplement z nową formułą.
      Autorzy najnowszego raportu prześledzili dalsze losy 3883 z 4203 osób, które wzięły udział w AREDS2. Sprawdzali, czy u osób tych AMD przekształciło się w formę zaawansowaną i czy zdiagnozowano u nich nowotwór płuc. Pomimo tego, że pod koniec badań AREDS2 wszyscy uczestnicy zrezygnowali z suplementu z beta-karotenem, analizy wykazały, że u palaczy lub byłych palaczy, którzy przyjmowali beta-karoten, ryzyko zapadnięcia na raka płuc jest ciągle niemal 2-krotnie większe. U osób, które przyjmowały luteinę i zeaksantynę nie stwierdzono wzrostu ryzyka.
      Ponadto ta dodatkowa analiza wykazała, że osoby, które od samego początku otrzymywały suplement z luteiną i zeaksantyną – więc przyjmowały go zarówno w czasie AEDS2 (2006–2011) jak i przez pięć kolejnych lat – ryzyko przekształcenia się AMD w postać zaawansowaną było o 20% mniejsze, niż u osób, które przez pierwszych 5 lat otrzymywały suplement z beta-karotenem i później zaczęły przyjmować nowy suplement. To potwierdza, że zastąpienie beta-karotenu luteiną i zeaksantyną było właściwym wyborem, mówi doktor Chew.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
      W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
      Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
      Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
      Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
      Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
      Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
      W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
      Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
      Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
      Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Intel potwierdził, że kosztem ponad 20 miliardów dolarów wybuduje nowy kampus w stanie Ohio. W skład kampusu wejdą dwie supernowoczesne fabryki półprzewodników, gotowe do produkcji w technologii 18A. To przyszły, zapowiadany na rok 2025 proces technologiczny Intela, w ramach którego będą powstawały procesory w technologii 1,8 nm. Budowa kampusu rozpocznie się jeszcze w bieżącym roku, a produkcja ma ruszyć w 2025 roku.
      Intel podpisał też umowy partnerskie z instytucjami edukacyjnymi w Ohio. W ich ramach firma przeznaczy dodatkowo 100 milionów dolarów na programy edukacyjne i badawcze w regionie. "To niezwykle ważna wiadomość dla stanu Ohio. Nowe fabryki Intela zmienią nasz stan, stworzą tysiące wysoko płatnych miejsc pracy w przemyśle półprzewodnikowym", stwierdził gubernator Ohio, Mike DeWine.
      To największa w historii Ohio inwestycja dokonana przez pojedyncze prywatne przedsiębiorstwo. Przy budowie kampusu zostanie zatrudnionych 7000 osób, a po powstaniu pracowało w nim będzie 3000osób. Ponadto szacuje się, że inwestycja długoterminowo stworzy dziesiątki tysięcy miejsc pracy w lokalnych firmach dostawców i partnerów.
      Kampus o powierzchni około 4 km2 powstanie w hrabstwie Licking na przedmieściach Columbus. Będzie on w stanie pomieścić do 8 fabryk. Intel nie wyklucza, że w sumie w ciągu dekady zainwestuje tam 100 miliardów dolarów, tworząc jeden z największych na świecie hubów produkcji półprzewodników.
      Tak olbrzymia inwestycja przyciągnie do Ohio licznych dostawców produktów i usług dla Intela. Będzie ona miała daleko idące konsekwencje. Fabryka półprzewodników różni się od innych fabryk. Stworzenie tak wielkiego miejsca produkcji półprzewodników jest jak budowa małego miasta, pociąga za sobą powstanie tętniącej życiem społeczności wspierających dostawców usług i produktów. [...] Jednak rozmiar ekspansji Intela w Ohio będzie w dużej mierze zależał od funduszy w ramach CHIPS Act, stwierdził wiceprezes Intela ds. produkcji, dostaw i operacji, Keyvan Esfarjani.
      Nowe fabryki mają w 100% korzystać z energii odnawialnej, dostarczać do systemu więcej wody niż pobiera oraz nie generować żadnych odpadów stałych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
      Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
      Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
      W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
      Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
      Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
      Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
      Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
      Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
      Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
      Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...