Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W górnej stratosferze odkryto trzy nieznane gatunki bakterii, które nie tylko są wyjątkowo odporne na oddziaływanie promieniowania ultrafioletowego, ale najwyraźniej pochodzą spoza Ziemi.

Nowym mikrobom nadano już nazwy: Janibacter hoylei (od astrofizyka Freda Hoyle'a), Bacillus isronensis (od Indian Space Research Organization, która wdrożyła eksperymenty z balonami) oraz Bacillus aryabhata (na cześć matematyka i astronoma hinduskiego, który żył na przełomie V i VI wieku; tak samo został też ochrzczony pierwszy satelita ISRO).

Balon wystartował z Hyderabad w Indiach. Wyposażono go w 16 cylindrów ze stali nierdzewnej, które zanurzono w ciekłym neonie, by uzyskać efekt kriopompy. Na różnych wysokościach – od 20 do 40 km - pobrano próbki i na spadochronie wysłano je na dół.

Po przejrzeniu zawartości znaleziono 12 kolonii bakteryjnych i 6 utworzonych przez grzyby. W przypadku dziewięciu stwierdzono ponad 98-proc. podobieństwo do gatunków zamieszkujących Ziemię. Trzy gatunki bakterii uznano jednak za kompletną nowość, na razie jednak nie wiadomo, skąd przybyły.

PVAS-1 (Janibacter hoylei), B3 W22 (Bacillus isronensis) i B8 W22 (Bacillus aryabhata) są w dużo większym stopniu odporne na działanie promieni UV niż ich najbliżsi filogenetycznie krewni.

To drugi tego typu eksperyment ISRO, czyli Indyjskiej Organizacji Badań Kosmicznych. Pierwszy przeprowadzono w 2001 r. Mimo że przyniósł dobre wyniki, postanowiono go powtórzyć z zachowaniem szczególnej ostrożności, by wyeliminować jakiekolwiek ziemskie zanieczyszczenia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Masakra - kolonie grzybów tak wysoko w atmosferze ? Czuję się jakbym żył w science fiction ;)

Wyobrażam już sobie grzybobranie samolotem - startujesz z koszami podwieszonymi za skrzydłami i kosisz kozaki na tony :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Gatunki grzybów budują sobie kolonie i szykują się do wysyłania grzybków w kosmos ,bakterie już nawet podróżują  między galaktycznie  a nawet zaprosiły bakterie z innych planet w odwiedziny a biedny człowiek nadal zadufany w sobie myśli że jest najinteligentniejszym gatunkiem na tej planecie ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Na planecie może tak, ale nad planetą to już nie wiadomo ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Osobiście nie rozpędzałbym się z orzekaniem, że pochodzą spoza Ziemi. Przecież nie znamy dokładnie nawet bakterii mieszkających na naszej skórze!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość derobert

hm, ale czy to aby nie jest niebezpieczne? :> jeszcze jakieś choróbsko nam tutaj ściągną i wszyscy zginiemy albo skończymy jako zombie!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zombie nie są wcale niebezpieczne - wybijałem je milionami jedną ręką, nawet można zasugerować stwierdzenie, że jednym palcem ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

hm ciekawe w jakich warunkach je wychodowali

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jakkolwiek uznaję możliwość życia w innych cześciach Kosmosu niż nasza planeta to z klasyfikowaniem tych bakterii jako obce nie rozpędzałbym się.

Zważywszy na znaczną różnicę w ich środowisku i reszty naszej planety muszą mieć odmienną budowę i znacznie różnić się od reszty ziemskich bakterii, co oznaczać może zwyczajnie ewolucję i przystosowanie się a nie obcą formę życia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Co to?

- To samolot!

- NIE, to ptak!,

- NIE, to superman!,

- NIE, to super grzyby!"

Taki remake supermana będzie ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Firma World View Enterprises z Arizony poinformowała o udanym teście balonu, który będzie wynosił turystów na wysokość 32 kilometrów nad Ziemią. Przedsiębiorstwo wykorzystuje balon podobnego typu, który w 2012 roku pozwolił Feliksowi Baumgartnerowi na wykonanie skoku z największej wysokości w dziejach.
      Dyrektor wykonawcza World View Enterprises, Jane Poynter, powiedziała, że ubiegłotygodniowy test był pierwszą próbą wszystkich komponentów połączonych w jedną całość. W czasie testu wykorzystano balon trzykrotnie mniejszy niż ten, który będzie wynosił turystów. Był on obciążony ładunkiem 10-krotnie mniejszym niż kapsuła z turystami.
      Pierwsze komercyjne loty balonu mają rozpocząć się w 2016 roku, a bilet na lot będzie kosztował 75 000 USD. Podczepiona pod balon kapsuła zabierze sześciu turystów i dwóch członków załogi. Przez dwie godziny będą oni znajdowali się na wysokości 32 kilometrów. Kapsuła będzie na tyle duża, że pozwoli pasażerom na spacerowanie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Emisja gazów cieplarnianych prowadzi do kurczenia się stratosfery, informują naukowcy z Czech, Austrii, Hiszpanii, USA, Niemczech i Austrii. Stratosfera rozciąga się na wysokości 20–60 kilometrów nad powierzchnią Ziemi, ponad troposferą. Wcześniejsze badania wykazały rozszerzanie się troposfery, co wskazywało na możliwość kurczenia się stratosfery. Teraz potwierdzono istnienie takiego zjawiska oraz zbadano, jak bardzo stratosfera się skurczyła.
      W wyniku emisji gazów cieplarnianych i rosnącej temperatury troposfera staje się coraz grubsza. Rośnie więc ciśnienie, jakie od spodu wywiera na stratosferę. Dlatego też międzynarodowy zespół naukowcy postanowił bliżej przyjrzeć się wpływowi emisji gazów cieplarnianych na stratosferę.
      Uczeni przyjrzeli się danym satelitarnym od lat 80. ubiegłego wieku i dodali je do modelu komputerowego, który między innymi bierze pod uwagę reakcje chemiczne zachodzące w atmosferze. Zbadali też wpływ całości na warstwę ozonową.
      Z badań wynika, że rozszerzająca się troposfera zwiększa nacisk na stratosferę. Dodatkowym czynnikiem powodującym kurczenie się stratosfery jest dwutlenek węgla, który się do niej przedostaje. W stratosferze ma on odwrotne działania do działania w troposferze. Działa na stratosferę chłodząco, przez co dodatkowo się ona kurczy.
      W wyniku tych zjawisk od lat 80. stratosfera skurczyła się o około 400 metrów, straciła więc około 1% grubości. Naukowcy uruchomili też swój model, by zbadał on przyszły rozwój sytuacji. Wynika z niego, że w ciągu najbliższych 60 lat stratosfera najprawdopodobniej straci około 1 kilometra grubości. Okazało się też, że zmiany w warstwie ozonowej mają niewielki wpływ na grubość atmosfery.
      Autorzy badań podkreślają, że nie wiedzą, jaki wpływ na Ziemię będzie miało kurczenie się stratosfery. Przypuszczają, że może to wpłynąć na trajektorie satelitów i sposób rozchodzenia się fal radiowych, co z kolei może mieć wpływ na GPS.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...