Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W sierpniu ubiegłego roku firma Ecotricity, która specjalizuje się w produkcji turbin wiatrowych, zatrudniła grupę doświadczonych inżynierów, by zerwali skarpety Jeremy'emu Clarksonowi i zburzyła krzywdzący stereotyp samochodów elektrycznych. Teraz, po zaledwie siedmiu miesiącach pracy, zbliża się dzień "zrywania skarpet".

Wspominani inżynierowie w przeszłości pracowali dla Lotusa, byli zatrudniani przez najlepsze zespoły Formuły 1 do rozwiązywania problemów technicznych, konstruowali takie samochody jak Lotus Elan, Corvette 2R1 czy Jaguar XJR15.

Teraz zbudowali samochód elektryczny, który rozpędza się od 0 do 100 km/h w ciągu czterech sekund, jego prędkość maksymalna wynosi ponad 225 km/h, a jego baterie można całkowicie załadować w czasie przerwy obiadowej.

Dale Vince, szef Ecotricity mówi, że celem projektu jest "przekonanie angielskiej klasy średniej, że samochody elektryczne mogą być szybko projektowane, wyglądać pięknie, być tanie w użyciu i działać dzięki energii wiatru".

Budowa pojazdu, który nie ma jeszcze nazwy, rozpoczęła się od wizyty w serwisie eBay i zakupieniu tam Lotusa Exige. W ciągu siedmiu miesięcy powstał elektryczny samochód dorównujący osiągom sportowym maszynom napędzanym benzyną.

W ciągu kilku najbliższych tygodni mają rozpocząć się pełne testy pojazdu.

Już teraz jednak warto zauważyć, że opracowanie samochodu trwało wyjątkowo krótko i było bardzo tanie. Prace pochłonęły jedynie 200 000 funtów. Fordowi zajęłoby to lata i wydaliby miliony funtów- mówi Ian Doble, szef zespołu projektowego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ostatnio często słyszymy o pożarach samochodów elektrycznych. Powstaje wrażenie, jakoby miały one miejsce bardzo często. Czy jednak rzeczywiście pojazdy elektryczne płoną częściej niż samochody spalinowe? Analiza danych z USA przeprowadzona przez porównywarkę ubezpieczeń AutoinsuranceEZ oraz dane Szwedzkiej Agencji Bezpieczeństwa Publicznego pokazują, że samochody elektryczne są bezpieczniejsze pod względem zagrożenia pożarowego od samochodów spalinowych. Największe zaś ryzyko stwarzają hybrydy.
      W ubiegłym roku analitycy z AutoinsuranceEZ przyjrzeli się danym zgromadzonym przez amerykańskie Narodową Radę Bezpieczeństwa Transportu (NTHB), Biuro Statystyk Transportu (BTS) oraz rządowym informacjom nt. samochodów, które sami producenci ściągnęli z rynku z powodu zagrożenia pożarowego. Z analizy wynika, że najbardziej ryzykownym typem pojazdu są hybrydy. Na każdych 100 000 sprzedanych hybryd zanotowano 3474,5 pożarów. Na drugim miejscu uplasowały się samochody spalinowe, z których płonie 1529,9 na 100 tysięcy sprzedanych. Jeśli zaś chodzi o pojazdy elektryczne, to zanotowano 25,1 pożarów na 100 000 sprzedanych.
      Eksperci sprawdzili też, ile pojazdów zostało ściągniętych z rynku z powodu ryzyka pożaru. I tak na przykład w roku 2020 Hyundai poinformował, że 430 000 sztuk spalinowego modelu Elantra jest zagrożonych pożarem. Ryzyko stwarzała instalacja elektryczna. W tym samym roku konieczna była naprawa usterki w 308 000 spalinowych modeli Kia Cadenza i Kia Sportage. Również tutaj problemem była instalacja elektryczna. Z kolei w 95 000 spalinowych Huyndai Genesis zagrożenie pożarowe stwarzał ABS, a producent McLarena Senny i McLarena 720S poinformował o wyciekach paliwa z 2800 samochodów.
      Narażone były też, oczywiście, samochody elektryczne. Pojawiła się konieczność naprawy usterek w 82 000 sztuk Huyndaia Kona i 70 000 Chryslera Pacifica. Tutaj problemem był akumulator. On też stwarza problemy w pojazdach hybrydowych.
      Jak więc wynika z dostępnych danych, w przypadku samochodów elektrycznych i hybrydowych pożary są powodowane przez usterki w akumulatorach, podczas gdy w pojazdach spalinowych przyczyn jest więcej i zagrożenie stanowiły układ elektryczny, wycieki paliwa oraz usterki w ABS.
      Dane z USA znajdują potwierdzenie w informacjach ze Szwecji. Na koniec 2022 roku u naszych północnych sąsiadów po drogach jeździło 610 716 samochodów elektrycznych i hybrydowych oraz 4 396 827 samochodów spalinowych. W tym czasie doszło do 106 pożarów elektrycznych środków transportu. Najczęściej, bo 38 razy, płonęły skutery, zanotowano 23 pożary samochodów osobowych i 20 pożarów rowerów.
      Szwedzi informują, że w ciągu ostatnich trzech lat liczba pożarów samochodów elektrycznych utrzymuje się na stałym poziomie około 20 rocznie, mimo że w tym czasie liczba samochodów tego typu zwiększyła się niemal dwukrotnie. To oznacza, że statystyczne ryzyko pożaru spada. W latach 2018–2020 w Szwecji zanotowano 81 pożarów samochodów elektrycznych. Do 17 doszło w czasie jazdy (zaliczono tutaj pożary w wyniku wypadków drogowych), 18 miało miejsce w trakcie ładowania, a w przypadku 46 nie ustalono w jakich warunkach pożar miał miejsce.
      Jak już wspomnieliśmy, w 2022 roku spłonęły w Szwecji 23 elektryczne i hybrydowe samochody pasażerskie. W tym samym roku całkowita liczba pożarów samochodów pasażerskich w Szwecji to około 3400 rocznie. Biorąc pod uwagę liczbę samochodów różnych typów trzeba stwierdzić, że zapaliło się 0,004% samochodów elektrycznych i hybrydowych oraz 0,09% samochodów spalinowych. Wśród pożarów pojazdów spalinowych układ elektryczny bądź akumulatory były przyczyną 656 pożarów.
      Z dostępnych polskich danych wynika, że w ubiegłym roku doszło w naszym kraju do 10 pożarów samochodów elektrycznych (na 29 780 zarejestrowanych) i 8333 pożarów samochodów spalinowych (na ok. 20 milionów zarejestrowanych). Zatem współczynnik pojazdów, które uległy pożarowi wynosi, odpowiednio, 0,03 i 0,04 procent.
      Głównym problemem związanym z pożarami samochodów elektrycznych, nie jest więc częstotliwość ich występowania, a trudności z ugaszeniem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rosnąca popularność samochodów elektrycznych (EV) często postrzegana jako problem dla sieci elektroenergetycznych, które nie są dostosowane do nowego masowego źródła obciążenia. Naukowcy z Uniwersytetu w Lejdzie oraz amerykańskiego Narodowego Laboratorium Energii Odnawialnej podeszli do zagadnienia z innej strony. Z analizy wynika, że w ciągu najbliższych lat EV mogą stać się wielkim magazynem energii ze źródeł odnawialnych, stabilizując energetykę słoneczną i wiatrową.
      Energia z wiatru i słońca to najszybciej rosnące źródła energii. So to jednak źródła niestabilne, nie dostarczają energii gdy wiatr nie wieje, a słońce nie świeci. Z analizy, opublikowanej na łamach Nature Communications, dowiadujemy się, że rolę stabilizatora mogą odegrać samochody elektryczne. Obecnie większość ich właścicieli ładuje samochody w nocy. Autorzy badań uważają, że właściciele takich pojazdów mogliby podpisywać odpowiednie umowy z dostawcami energii. Na jej podstawie dostawca energii sprawowałby kontrolę nad ładowaniem samochodu w taki sposób, by z jednej strony zapewnić w sieci odpowiednią ilość energii, a z drugiej – załadować akumulatory do pełna. Właściciel samochodu otrzymywałby pieniądze za wykorzystanie jego pojazdu w taki sposób, wyjaśnia główny autor badań, Chengjian Xu.
      Co więcej, gdy pojemność akumulatorów zmniejsza się do 70–80 procent pojemności początkowej, zwykle nie nadają się one do zastosowań w transporcie. Jednak nadal przez wiele lat mogą posłużyć do stabilizowania sieci elektroenergetycznych. Dlatego też, jeśli kwestia taka zostanie uregulowana odpowiednimi przepisami, akumulatory takie mogłyby jeszcze długo służyć jako magazyny energii.
      Z wyliczeń holendersko-amerykańskiego zespołu wynika, że do roku 2050 samochody elektryczne oraz zużyte akumulatory mogą stanowić wielki bank energii o pojemności od 32 do 62 TWh. Tymczasem światowe zapotrzebowanie na krótkoterminowe przechowywanie energii będzie wówczas wynosiło od 3,4 do 19,2 TWh. Przeprowadzone analizy wykazały, że wystarczy, by od 12 do 43 procent właścicieli samochodów elektrycznych podpisało odpowiednie umowy z dostawcami energii, a świat zyska wystarczające możliwości przechowywania energii. Jeśli zaś udałoby się wykorzystać w roli magazynu energii połowę zużytych akumulatorów, to wystarczy, by mniej niż 10% kierowców podpisało umowy z dostawcami energii.
      Już w roku 2030 w wielu regionach świata EV i zużyte akumulatory mogą zaspokoić popyt na krótkoterminowe przechowywanie energii.
      Oczywiście wiele tutaj zależy od uregulowań prawnych oraz od tempa popularyzacji samochodów elektrycznych w różnych regionach świata. Autorzy badań zauważają też, że wielką niewiadomą jest tempo degradacji akumulatorów przyszłości, które będzie zależało m.in. od postępu technologicznego, czy też tempo rozwoju systemów zarządzania energią. Nie wiadomo także, czy nie zajdą radykalne zmiany w samym systemie transportowym. Nie można wykluczyć np. zmiany przyzwyczajeń i rozpowszechnienia się komunikacji zbiorowej czy systemów wspólnego użytkowania pojazdów, na dostępność samochodów i akumulatorów może też wpłynąć rozpowszechnienie się pojazdów autonomicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Prezydent Biden zatwierdził przeznaczenie 900 milionów dolarów na budowę stacji ładowania samochodów elektrycznych. Podczas North American International Auto Show w Detroit prezydent stwierdził, że niezależnie od tego czy będziecie jechali wybrzeżem autostradą I-10 [prowadzi z Kalifornii na Florydę - red.] czy I-75 [wiedzie z Michigan na Florydę] stacje do ładowania będą wszędzie i można je będzie znaleźć równie łatwo jak stacje benzynowe.
      Wspomniane 900 milionów USD będą pochodziły z zatwierdzonego w ubiegłym roku planu infrastrukturalnego na który przewidziano bilion dolarów, z czego 550 miliardów na transport czy internet szerokopasmowy i infrastrukturę taką jak np. sieci wodociągowe.
      W 2020 roku amerykański transport odpowiadał za 27% amerykańskiej emisji gazów cieplarnianych. To najwięcej ze wszystkich działów gospodarki. Władze Stanów Zjednoczonych chcą, by do roku 2030 samochody elektryczne stanowiły połowę całej sprzedaży pojazdów w USA. Poszczególne stany podejmują własne, bardziej ambitne inicjatywy. Na przykład Kalifornia przyjęła przepisy zgodnie z którymi od 2035 roku zakaże sprzedaży samochodów z silnikami benzynowymi.
      Obecnie pojazdy elektryczne stanowią jedynie 6% sprzedaży samochodów w USA. Jedną z najważniejszych przyczyn, dla których Amerykanie nie chcą kupować pojazdów z silnikiem elektrycznym jest obawa o łatwy dostęp do punktów ładowania. Obecnie w całym kraju takich punktów jest poniżej 47 000. Biden chce, by do roku 2030 ich liczba wzrosła do 500 000.
      W dokumencie zatwierdzającym wspomniane 900 milionów USD znalazła się też propozycja, by narzucić stanom obowiązek zakładania stacji ładowania pojazdów elektrycznych do 50 mil na głównych drogach stanowych i autostradach. Stany o dużym odsetku społeczności wiejskich już wyraziły obawę, że z takim obowiązkiem sobie nie poradzą. Dlatego też dla takich stanów oraz na potrzeby centrów miejskich i ubogich społeczności przygotowano program grantowy o łącznej wartości 2,5 miliarda USD.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zużyte łopaty turbin wiatrowych stanowią coraz poważniejszy problem ekologiczny. Obecnie są składowane na wysypiskach, a ich liczba szybko rośnie. A co, gdyby można było je... zjeść? Podczas odbywającego się właśnie spotkania Amerykańskiego Towarzystwa Chemicznego naukowcy z Michigan State University (MSU) zaprezentowali nowy materiał na łopaty, które po zużyciu można by przerobić na nowe łopaty lub zamienić w szereg innych produktów, w tym w żelki spożywcze.
      Piękno naszego wynalazku polega na tym, że po zakończeniu cyklu życia łopaty, materiał, z którego została wykonana można rozpuścić na części składowe i użyć znowu. I tak bez końca, mówi doktor John Dorgan, jeden z twórców nowego materiału.
      Łopaty turbin są wykonywane z włókna szklanego. Niektóre firmy opracowały co prawda technologię przerabiania włókna na mniej wartościowy materiał, ale większość łopat kończy na składowiskach. A z tym jest coraz większy problem. Jako, że turbiny są tym bardziej efektywne, im są większe, produkuje się je coraz większe. Co gorsza wiele firm wymienia łopaty na długo przed przewidywanym czasem ich eksploatacji, by zamontować większą turbinę.
      Dogan i jego koledzy stworzyli materiał na łopaty składający się z włókna szklanego oraz syntetycznego i naturalnego polimeru z roślin. Powstała w ten sposób żywica na tyle wytrzymała, że można ją wykorzystywać w turbinach czy przemyśle motoryzacyjnym. Następnie materiał taki został rozpuszczony do świeżego monomeru, usunięto z niego mechanicznie włókno szklane, a z monomeru wykonano nowy materiał o – co niezwykle ważne – identycznych właściwościach jak materiał oryginalny.
      Co interesujące, nowy materiał może znaleźć wiele innych zastosowań, w zależności od domieszek. Naukowcy stworzyli jego wersję, która nadaje się do wykonania blatów kuchennych i kranów. Można go też kruszyć i wykorzystywać w technologii formowania wtryskowego.
      Bardzo interesującą cechą nowego materiału jest też możliwość przetworzenia go na produkt o wyższe wartości. Za pomocą odpowiednich technik materiał ze zużytych łopat turbin można przerobić na szkło akrylowe (PMMA), z którego powstaną szyby czy reflektory samochowowe, a z kolei PMMA można przerabiać na superchłonny polimer wykorzystywany w pieluszkach. Możliwe jest też uzyskanie mleczanu potasu, który po oczyszczeniu zostanie wykorzystany w żelkach czy napojach. Uzyskaliśmy z naszego materiału mleczan potasu jakości spożywczej. Taki sam, jaki jest używany w moich ulubionych żelkach, mówi Dorgan.
      Naukowcy z Michigan chcą teraz wyprodukować łopaty do turbin średniej wielkości, by przeprowadzić testy polowe. Zauważają, że obecnie na rynku brak jest odpowiedniej ilości bioplastiku, by zaspokoić ew. zapotrzebowanie na nowe turbiny. Na początku ich produkcja musiałaby być dość ograniczona z tego powodu, mówi Dorgan.
      Uczony zauważa, że nie powinniśmy mieć oporów przed jedzenie słodyczy, które kiedyś były turbiną wiatrową. Atom węgla pochodzący z rośliny jest takim samym atomem węgla jak ten pochodzący z paliw kopalnych. To część globalnego obiegu węgla. My wykazaliśmy, że możemy z biomasy stworzyć wytrzymałe tworzywo sztuczne, a następnie zamienić je na pożywienie, stwierdza uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jedną z głównych przeszkód stojących na drodze ku upowszechnieniu się samochodów elektrycznych jest długi czas ładowania akumulatorów. Niewykluczone jednak, że już wkrótce możliwe będzie pełne załadowanie akumulatora w ciągu zaledwie 10 minut. Takie pojedyncze ładowanie pozwoli na przejechanie 320–480 kilometrów.
      Wykazaliśmy, że możliwe jest załadowanie w 10 minut akumulatora zapewniającego energię na 200–300 mil podróży, mówi profesor Chao-Yang Wang, dyrektor Electrochemical Engine Center na Pennsylvania State University. Żywotność takiego akumulatora wynosi 2500 cykli ładowania-rozładowania, co pozwala na przejechanie około pół miliona mil.
      Już obecnie można szybko ładować akumulatory litowo-jonowe, jednak znacząco skraca to ich żywotność, gdyż na anodzie osadza się metaliczny lit. Nie dość, że prowadzi on do spadku pojemności akumulatora, może też spowodować jego awarię. Im akumulator jest starszy, tym łatwiej dochodzi do tego niekorzystnego procesu. Wiadomo też, że jeśli akumulator zostanie podgrzany podczas ładowania, to nie dochodzi do osadzania się litu. Jednak samo podgrzewanie również skracażywotność urządzenia.
      Wang i jego zespół przeprowadzili eksperymenty, podczas których zauważyli, że jeśli akumulator zostanie podgrzany do temperatury do 60 stopni Celsjusza na nie dłużej niż 10 minut, a następnie szybko schłodzi się do temperatury pokojowej, to można go szybko naładować, zapobiec osadzaniu się litu i nie wpływa to negatywnie na jego żywotność.
      Obecnie uważa się, że podgrzanie akumulatora do 60 stopni Celsjusza nie powinno mieć miejsca, gdyż znacząco skraca to jego żywotność, mówi Wang. Uczony wraz z zespołem przeprowadzili serię eksperymentów, podczas których do elektrod komercyjnie dostępnych akumulatorów dodano folię aluminiową o grubości liczonej w mikronach. Pozwoliła ona na podgrzanie elektrod w ciągu zaledwie 30 sekund. Następnie uczeni testowali zmodyfikowane akumulatory, ładując je po podgrzaniu do 40, 49 i 60 stopni C. Ich wydajność porównano z akumulatorem testowym, pracującym w temperaturze 20 stopni.
      Okazało się, że przy temperaturze 20 stopni Celsjusza już po 60 cyklach ładowania-rozładowania pojawiły się problemy, które znacząco zmniejszyły wydajność. Tymczasem gdy elektrody podgrzano do 60 stopni Celsjusza akumulatory bez większych problemów wytrzymały 2500 cykli ładowania-rozładowania.
      Ważne było też szybkie schłodzenie akumulatora. Wang twierdzi, że można do tego wykorzystać system chłodzący pojazdu, tym bardziej, że olbrzymią różnicę robi już schłodzenie z 60 do niecałych 24 stopni Celsjusza.
      Uczeni chcą kontynuować swoje badania i mają nadzieję, że opracują technologię pozwalającą na pełne załadowanie akumulatora w ciągu zaledwie 5 minut.
      Szczegóły badań opublikowano w piśmie Joule.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...