Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z USA opracowali składający się z 22 pytań test, który pomaga w badaniach przesiewowych dotyczących pewnego rodzaju nowotworu okrężnicy.

Zespół Lyncha (dziedziczny niepolipowaty rak jelita grubego) zawdzięcza swą nazwę amerykańskiemu naukowcowi — Henry'emu Lynchowi. Rozróżnia się dwa jego typy. Wiążą się one ze zwiększonym ryzykiem raka jelita grubego (bliższego odcinka okrężnicy) oraz nowotworów macicy (szyjki i endometrium) i układu moczowego. Chorują osoby młode. Za wszystko odpowiadają mutacje w genach MSH2, PMS1, PMS2 i MLH1. Sześćdziesiąt procent zachorowań to skutek mutacji genów MSH2 oraz MLH1. W rodzinie obciążonej genetycznie występuje tylko jeden z wymienionych genów.

Zespół Lyncha jest rzadki, ale należy do najbardziej rozpowszechnionych rodzinnych nowotworów okrężnicy i odbytnicy (stanowi od 2 do 5% wszystkich odnotowywanych w państwach zachodnich przypadków).

Test, opisany szczegółowo na łamach Journal of the American Medical Association, koncentruje się na osobistej i rodzinnej historii chorób. Zamieszczono w nim pytania o nowotwory okrężnicy i endometrium oraz o wiek ich zdiagnozowania. Jego rzetelność sprawdzono na grupie 898 osób z osobistą lub rodzinną historią sugerującą zespół Lyncha. Ludzi tych poddano badaniom genetycznym (w poszukiwaniu mutacji odpowiednich genów). U ok. 14% udało się je odnaleźć. Po przebadaniu 1106 pacjentów z dziedzicznym niepolipowatym rakiem jelita grubego mutacje "wytropiono" u 15%.

Dr Judith Balmana (początkowo z bostońskiego Dana-Farber Cancer Institute, a obecnie z hiszpańskiego Universitat Autonoma Barcelona) podkreśla, że jej zespół stworzył obiektywne i "łatwe w obsłudze" narzędzie. Testu można używać przy początkowej ocenie pacjentów, u których istnieje ryzyko zachorowania na zespół Lyncha.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Podczas zapłodnienia do komórki jajowej wnika prawie cały plemnik (główka i szyjka), jednak, jak się okazuje, większość jego organelli komórkowych, w tym mitochondria, nie jest przekazywanych potomstwu. Powód? Wkrótce po zapłodnieniu oocyt eliminuje je na drodze autofagii.
      Amerykańsko-francuski zespół jako pierwszy zademonstrował, że w ciągu kilku minut od zapłodnienia komponenty plemnika zostają zamknięte w pęcherzykach, a następnie rozłożone przez enzymy. Za pomocą PCR (reakcji łańcuchowej polimerazy) wykazano, że cały materiał genetyczny z mitochondriów ojca ulega szybkiej degradacji.
      W artykule opublikowanym na łamach Science specjaliści wyrażają nadzieję, że zrozumienie ewolucyjnych źródeł eliminowania ojcowskich mitochondriów przyczyni się także np. do ulepszenia metod klonowania czy zapłodnienia in vitro.
      Wyłącznie matczyne mitochondria pozostają u większości organizmów, w tym u ssaków. Dotąd nie było jednak wiadomo, kiedy i w jaki sposób dochodzi do wyeliminowania mitochondriów od ojca. Odpowiedź na te pytania znaleziono podczas badań na nicieniu Caenorhabditis elegans.
      Podczas eksperymentów akademicy zablokowali system komórkowy odpowiedzialny za spermofagię. Okazało się, że ojcowskie mitochondria pozostały wtedy w embrionie. Później Francuzi i Amerykanie sprawdzali, czy podobne zjawiska zachodzą w nowo zapłodnionych oocytach myszy. Zauważyli, że białka autofagocytarne gromadzą się wokół środkowej części plemnika, gdzie znajdują się mitochondria.
      Naukowcy proponują pewne wyjaśnienie efektu, który najwyraźniej występuje u wielu gatunków zwierząt. Wg nich, mitochondria plemników są eliminowane przez komórki jajowe, bo ze względu na nasilony metabolizm męskich gamet DNA w mitochondriach plemników może przechodzić częste mutacje. Lepiej ich więc nie przekazywać potomstwu.
    • przez KopalniaWiedzy.pl
      W sezonie letnim oparzenia słoneczne nie należą, niestety, do rzadkości. Najlepiej ich, oczywiście, unikać, ale gdy już spieczemy się jak raki, trzeba jakoś ulżyć uszkodzonej skórze. Naukowcy z Uniwersytetu Stanowego Ohio ujawniają, że być może już w niedalekiej przyszłości w sukurs przyjdą nam w takiej sytuacji leki lub balsamy, które dzięki jednemu elektronowi naprawią uszkodzone przez promieniowanie ultrafioletowe DNA (Proceedings of the National Academy of Sciences).
      Amerykanie prowadzili badania nad fotoliazą – enzymem występującym w komórkach roślinnych i u niektórych zwierząt. U ssaków, w tym u człowieka, nie stwierdzono białek o aktywności fotoliaz. Enzymy te wiążą komplementarne nici DNA i rozbijają dimery pirymidynowe (połączenie pary tymin lub cytozyn tej samej nici DNA), które tworzą się pod wpływem promieniowania UV.
      Podczas eksperymentów okazało się, że "na przekór" wcześniejszym wyliczeniom teoretycznym, fotoliazy nie naprawiają obu zniekształconych miejsc naraz. Wszystko odbywa się w dwóch etapach, podczas których enzym przepuszcza przez cząsteczkę DNA elektron. Porusza się on w zamkniętym obwodzie, łączącym po okręgu oba zmienione dimerowo punkty. Prof. Dongping Zhong dostrzegł to, ponieważ posłużył się laserem i wywołał coś na kształt efektu stroboskopowego.
      Pierwsze kowalencyjne wiązanie rozpadło się w ciągu kilku bilionowych części sekundy, a następne po 90 bilionowych sekundy opóźnienia. Przyczyny należy szukać właśnie w wystrzelonym przez enzym elektronie, który stanowi źródło energii potrzebnej do rozbijania. Cząstka potrzebuje bowiem czasu i energii, by przebyć drogę od jednego punktu napraw do drugiego. Elektron porusza się po zewnętrznej krawędzi uszkodzonego fragmentu DNA. Zespół z Ohio prowadził badania na dimerach cyklobutanowych, które przyjmują kształt wystającego z boku nici pierścienia.
      Enzym musi wstrzelić elektron w uszkodzone DNA, ale jak? Są dwie możliwości. Elektron może przeskoczyć z jednej strony pierścienia na drugą, co znacznie skraca dystans, jednak zamiast tego cząstka wybiera trasę "krajoznawczą". Odkryliśmy, że podczas podróży napotyka na inną cząstkę, która działa jak rozbieg przyspieszający ruch elektronów i w ten sposób dłuższa droga jest pokonywana w krótszym czasie. Do wystrzelenia elektronu fotoliaza wykorzystuje pochłoniętą energię świetlną (preferowana jest niebieska i fioletowa część pasma).
      Akademicy mają nadzieję, że sztuczne fotoliazy zostaną wykorzystane np. w balsamach po opalaniu. Pomogłyby one w likwidowaniu dimerów pirymidynowych, które nie dopuszczają do prawidłowej replikacji DNA i prowadzą do mutacji genetycznych i nowotworów skóry.
    • przez KopalniaWiedzy.pl
      Grupa uczonych z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) opracowała sposób na szczegółowe badanie ewolucji nowotworów u ludzi, co pozwala na stwierdzenie kolejności występowania mutacji genetycznych prowadzących do pojawienia się choroby.
      Praca uczonych podobna jest do pracy archeologów. Na podstawie badań DNA komórek nowotworowych starają się określić kolejność pojawiania się mutacji.
      Dermatolog Raymond Cho i współpracujący z nim uczeni z Oregon University, University of California, Berkeley i Samsung Advanced Institute of Technology określili już kolejność pojawiania się mutacji w przypadku raka kolczystokomórkowego skóry, który charakteryzuje się największą liczbą mutacji, oraz raka jajnika. Badania nagromadzenia kopii genu TP53, związanego z pojawieniem się obu tych nowotworów, dowiodły, że duże zmiany w tym genie zachodzą na wczesnych etapach rozwoju choroby. Określenie kolejności mutacji jest bardzo istotne, gdyż pozwoli stwierdzić, które zmiany odpowiadają za który etap choroby.
      „Mimo że z nowotworami związane są liczne mutacje, to te, do których zawsze dochodzi wcześniej, wywołują kolejne anomalie" - mówi Cho.
    • przez KopalniaWiedzy.pl
      Myszy, zmodyfikowane genetycznie w taki sposób, by starzeć się 2-krotnie szybciej niż normalnie, pozostawały młodsze fizycznie i bardziej żywotne, gdy regularnie się gimnastykowały.
      Zespół doktora Marka Tarnopolsky'ego z McMaster University wykorzystał gryzonie z mutacją w genie odpowiedzialnym na naprawę centrów energetycznych komórki – mitochondriów. Gdy myszy miały 3 miesiące, co stanowi odpowiednik wieku 20 lat u ludzi, niektóre zwierzęta nakłaniano kilka razy w tygodniu do biegania przez 45 min w kołowrotku. Reszta nie była aktywna fizycznie.
      Po 5 miesiącach (gdyby były ludźmi, gryzonie miałyby ok. 60 lat) osobniki gimnastykujące się wyglądały jak niezmodyfikowani pobratymcy – były zdrowsze, bardziej aktywne i najwyraźniej biologicznie młodsze od niećwiczących zwierząt. Te ostatnie w dużej mierze wyłysiały, były nieruchawe, mniej towarzyskie i płodne.
      Skóra, jajniki, jądra, śledziona, nerki i wątroba był u myszy aktywnych w lepszym stanie. U nieruszających się zwierząt doszło do zmniejszenia objętości mózgu i powiększenia mięśnia sercowego, a u "kołowrotkowców" zachowały one swoje prawidłowe rozmiary. U myszy zmuszanych do ćwiczeń mięśnie nadal miały normalną budowę, podczas gdy u reszty uległy degeneracji.
      Doktorant Adeel Safdar podkreśla, że nie wiadomo, co dokładnie się stało, ale nie da się zaprzeczyć, że ćwiczenia są dobrym fizjologicznym stresorem, który zmusza organizm do wytwarzania energii. U biegających myszy doszło do odzyskania dużej części funkcji mitochondriów (warto przypomnieć, iż uznaje się, że akumulacja mutacji mitochondrialnego DNA – mtDNA – odpowiada za stopniowe pogarszanie się funkcji tkanek podczas starzenia czy np. w przebiegu choroby nowotworowej).
      Naukowcy sądzą, że wyniki odnoszą się również do ludzi, a to oznacza, że nawet niewielka dawka ćwiczeń – plus ograniczenie liczby spożywanych kalorii – powinna wydłużyć nam życie...
    • przez KopalniaWiedzy.pl
      Cechy naszego wyglądu - nasz fenotyp - zależą jedynie od posiadanych przez nas genów, tak od zawsze twierdziły podręczniki genetyki. Mimo że wątpliwości co do tej wyłączności pojawiały się od dziesięcioleci, dopiero niedawno zyskały wsparcie dzięki klonowaniu zwierząt. Ku zdziwieniu bowiem naukowców, sklonowane osobniki różniły się od swoich „wzorców" posiadając na przykład odmienne umaszczenie. Dzięki naukowcom z Yale udało się zajrzeć w zaskakujący mechanizm, który wspiera geny w ich działaniu.
      Wskazówką były dziwne efekty u much pozbawionych proteiny Hsp-90. Podlegały one losowym i zaskakującym mutacjom, na przykład w miejsce oczu wyrastały im nogi. Hsp-90 ma uaktywniać inne białka do odpowiedzi na stres, ale stało się oczywiste, że pełni także inną rolę - chroni genom przed przypadkowymi i szkodliwymi zmianami. Początkowo przypuszczano, że po prostu Hsp-90 hamuje aktywność transpozonów (zwanych wędrującymi genami), czyli sekwencji DNA, które potrafią przemieszczać się w obrębie genomu.
      Mechanizm okazał się nieco bardziej skomplikowany: białko Hsp-90 blokuje zarówno powstawania, jak i ekspresję nowych wariantów genów, ale czyni to we współpracy z jeszcze jedną cząsteczką oraz tzw. Piwi-interacting RNA (piRNA).
      Współpraca Hsp-90 oraz piRNA wyjaśnia także zdolność niektórych prostych komórek (jak fibroblasty) do przekształcania się w komórki macierzyste. Może także stanowić klucz do wielu zagadek związanych z powstawaniem nowotworów i szkodliwych mutacji. Jak podsumowuje Haifan Lin, główny autor studium, musimy się jeszcze wiele nauczyć o sposobach, w jakich jesteśmy kształtowani przez nasze geny.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...