Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jatrofa i algi napędzą samolot

Rekomendowane odpowiedzi

Dzisiaj o godzinie 18.15 czasu polskiego (godz. 11.15 czasu lokalnego) z lotniska w Houston wystartuje pierwszy w USA dwusilnikowy samolot pasażerski zasilany biopaliwem z alg. Samoloty pasażerskie korzystają z biopaliw tylko podczas testów. Dotychczas używały paliwa produkowanego z kukurydzy czy oleju palmowego, które przyczyniają się do wzrostu cen żywności i wycinania lasów bądź też z mieszaniny biopaliwa z jatrofy z paliwem tradycyjnym.

Z Houston wyruszy Boeing 737-800 firmy Continental napędzany silnikami CFM56-B spalającymi biopaliwo z alg i nasion jatrofy.

Jatropha curcas pochodzi z Ameryki Południowej. Drzewo, zwane po polsku jatrofą przeczyszczającą lub obrzydlcem przeczyszczającym, należy do rodziny wilczomleczowatych. Jako gatunek mało wymagający stanowi ucieleśnienie marzeń producenta biodiesla: potrzebuje zaledwie 300 mm opadów rocznie (!) i rośnie na każdym rodzaju gleby, a więc masowa produkcja biopaliwa z jatrofy byłaby szansą dla krajów rozwijających się. Roślinę stosuje się przy rekultywacji gleby, ale przede wszystkim jako źródło oleju. W Europie powstała już rafineria jatrofy. Nasiona są przetwarzane w Londynie.

Kolejne źródło biopaliwa - algi - rosną bardzo wydajnie nawet w słonej wodzie, więc nie zużywają cennej dla ludzi, zwierząt i innych roślin wody słodkiej.

Biopaliwa mają też i tę zaletę, że są jedną z niewielu alternatyw, które można zastosować w lotnictwie. Przemysł lotniczy musi szukać sposobów na zmniejszenie emisji węgla, gdyż coraz częściej pojawiają się pomysły dodatkowego opodatkowania tego typu emisji. Wykorzystywanie w powietrzu wodoru czy napędów elektrycznych jest znacznie bardziej skomplikowane, tak więc najłatwiejszym rozwiązaniem są biopaliwa.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

czegoś tu nie rozumiem...

 

jeśli chodzi o redukcję emisji węgla (jak się domyślam głownie w postaci CO2) to jak niby ma się to poprawić porzez spalanie innego paliwa?

 

to raczej jest rozwiązanie na kurczace się zasoby ropy a nie na emisję węgla...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

widac spalanie biopaliw generuje mniej co2  8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Chodzi o to że co2, który powstaje podczas spalania biopaliwa musi być wcześniej pobrany przez rośliny z atmosfery

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy piorun uderzy w samolot, pilot powinien jak najszybciej wylądować, by można było sprawdzić ewentualne uszkodzenia maszyny. Na pierwszym planie jest tutaj stawiane bezpieczeństwo, jednak bardzo często maszyna wychodzi z takiego zdarzenia bez szwanku, a cała procedura powoduje spore koszty i opóźnienia.
      Najnowsze badania sugerują, że najlepszym sposobem na zmniejszenie ryzyka uderzenia pioruna w samolot może być... dodanie ładunku elektrycznego na jego powierzchni.
      Podczas lotu na powierzchni samolotu gromadzą się dodanio lub ujemnie naładowane jony. Szczególnie dużo gromadzi się ich na dziobie, końcówkach skrzydeł i statecznika. Jeśli pojawi się duża różnica w ładunkach zanim samolot wleci w naładowany obszar atmosfery, jony mogą przepłynąć wzdłuż poczycia i zamknąć obwód z chmurami prowadząc do pojawienia się wyładowania.
      W 2018 roku inżynier Carmen Guerra-Garcia z MIT i jej sudent Colin Pavan, przeprowadzili obliczenia, z których wynikało, że aby zapobiec takim wydarzeniom należy dodać do poszycia samolotu ujemne ładunki elektryczne. Teraz oboje przetestowali model samolotu z umieszczonym na pokładzie generatorem. Badali swój model w różnych warunkach, sprawdzając, jak rozkładają się ładunki elektryczne i co się z nimi dzieje.
      Badania potwierdziły, że przepływ jonów prowadzi do zainicjowania wyładowań elektrycznych. Potwierdziły też, że dodanie ujemnych ładunków pomaga w uniknięciu takich zjawisk.
      Naładowanie samolotu brzmi jak pomysł szaleńca, ale dodanie ładunków ujemnych zapobiega gromadzeniu się ładunków dodatnich, co z kolei może zapobiec pojawieniu się wyładowania, mówi inżynier Pavlo Kochkin z Uniwersytetu w Bergen. Od lat zajmuje się on problematyką wyładowań elektrycznych na powierzchni samolotów. Teraz, zainspirowany badaniami naukowców z MIT, tworzy specjalny symulator, w którym uwzględni różne poziomy naelektryzowania powietrza i zawartość pary wodnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
      Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
      Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
      Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
      Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
      Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
      Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
      Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszystkie samoloty, od początku istnienia tych maszyn, poruszają się dzięki pomocy ruchomych części, takich jak śmigła czy turbiny. Inżynierowie z MIT skonstruowali pierwszy w historii samolot, który nie zawiera żadnych ruchomych części. Jest on zasilany przez „wiatr jonowy” wytwarzany na pokładzie samolotu, który zapewnia mu wystarczający ciąg, by utrzymać maszynę w powietrzu. W przeciwieństwie do innych rozwiązań stosowanych w lotnictwie, nowy napęd jest całkowicie cichy i nie potrzebuje paliw kopalnych.
      To pierwszy zdolny do lotu samolot z napędem niezawierającym ruchomych części. Potencjalnie może to doprowadzić do powstania samolotów, które są cichsze, prostsze w konstrukcji i nie powodują emisji pochodzącej ze spalania, cieszy się profesor Steven Barrett z MIT. Uczony uważa, że w najbliższej przyszłości mogą pojawić się ciche drony korzystające z wiatru jonowego. W dalszej zaś perspektywie uczony przewiduje pojawienie się samolotów pasażerskich i transportowych o napędzie hybrydowym, łączącym wiatr jonowy z tradycyjnym silnikiem.
      Barrett przyznaje, że do pracy nad nowatorskim napędem zainspirował go serial Star Trek, który namiętnie oglądał w dzieciństwie. Szczególnie fascynowały go pojazdy latające, które bez wysiłku poruszały się w atmosferze, nie były wyposażone w żadne śmigła, nie wydzielały spalin i nie hałasowały. Pomyślałem, że w przyszłości powstaną samoloty, które nie będą miały śmigiel i turbin. Będą jak statki w Star Treku, które świecą na niebiesko i cicho się poruszają, wspomina Barrett.
      Przed dziewięciu laty naukowiec rozpoczął prace nad systemem napędowym bez ruchomych części. Szybko zwrócił uwagę na wiatr jonowy, czyli ciąg elektroaerodynamiczny. Jego koncepcję opracowano w latach 20. ubiegłego wieku. Mówi ona, że jeśli pomiędzy dwiema elektrodami, cienką i grubą, pojawi się wystarczające napięcie, to powietrze przepływające pomiędzy elektrodami wytworzy tyle ciągu, że będzie w stanie napędzać mały samolot. Przez lata koncepcją taką zajmowali się głównie hobbyści, którym udawało się stworzyć bardzo małe samoloty, podłączone do źródła napięcia, które przez chwilę unosiły się w powietrzu. Uzyskanie dłuższego lotu większym urządzeniem uznawano za niemożliwe.
      Jednak Barrettowi się udało. Skonstruowany przez niego i jego zespół samolot waży około 2,5 kilogramów i ma skrzydła o rozpiętości 5 metrów. Pod skrzydłem, wzdłuż jego przedniej krawędzi, znajdują się cienkie struny, przypominające ułożeniem płot otaczający pastwisko. Wzdłuż tylnej krawędzi również mamy struny, ale grubsze. Te pierwsze działają jak katoda (elektroda dodatnia), a drugie jak anoda. W kadłubie pojazdu umieszczono akumulatory litowo-jonowe, które dostarczają one napięcie rzędu 40 000 woltów do katody. Naelektryzowane struny z przodu wyrywają elektrony z otaczających je molekuł powietrza, a zjonizowane w ten sposób powietrze przepływa w kierunku strun z tyłu. Każdy z przepływających jonów miliony razy zderzał się z molekułami powietrza, tworząc w ten sposób ciąg.
      Twórcy samolotu testowali go w sali o długości 60 metrów. Pojazd przemierzał całą długość sali. Przeprowadzono 10 testów i za każdym razem stwierdzono, że napęd działa. To był najprostszy możliwy projekt. Daleka jeszcze droga do stworzenia samolotu, zdolnego do wykonania użytecznej misji. Musi być on bardziej wydajny, lecieć dłużej i być zdolnym do lotu na otwartej przestrzeni, dodaje Barrett.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Prowadzone przez trzy lata badania wskazują, że w obecnie obowiązujących modelach klimatycznych trzeba będzie zmienić dane dotyczące emisji metanu z wód Oceanu Arktycznego. Okazuje się bowiem, że uwalniają one „znaczące ilości" tego gazu.
      Badania prowadzono za pomocą specjalnie wyposażonego samolotu, który odbył serię lotów pomiędzy biegunami. Jego zadaniem było mierzenie koncentracji gazów cieplarnianych oraz sadzy na różnych wysokościach, w różnych miejscach i o różnych porach roku.
      Program miał pozwolić na stworzenie przekrojowego modelu atmosfery. Znaleźliśmy coś, czego wcześniej nie podejrzewaliśmy - mówi profesor Steven Wofsy z Uniwersytetu Harvarda.
      Do pomiarów koncentracji gazów w pobliżu powierzchni Ziemi tradycyjnie wykorzystywano stacje naziemne ulokowane np. w górach. W ostatnich czasach do pracy zaprzęgnięto też satelity, które potrafią mierzyć koncentrację dwutlenku węgla. Jednak wykorzystanie samolotu daje znacznie lepszy obraz i pozwala badać to, co dzieje się na wysokościach od 150 do ponad 14 000 metrów. To tak, jakby porównywać zdjęcie rentgenowskie z lat 60. ubiegłego wieku ze współczesną tomografią komputerową - mówi Wofsy.
      Zdaniem naukowca pełne opracowanie zdobytych danych zajmie wiele lat, ale już teraz naukowcy dowiedzieli się wielu zaskakujących rzeczy. Między innymi tego, że z wód Oceanu Arktycznego uwalniane są duże ilości metanu. Nie wiadomo, skąd ten metan pochodzi, jednak wstępne dane pokazują, że jest go na tyle dużo, iż może mieć to znaczenie w skali całej planety.
      Drugi z głównych uczestników badań, Britton Stephens, zwraca uwagę na zebrane podczas projektu HIPPO dane dotyczące cyklu tlenu i dwutlenku węgla. Połowa emitowanego przez nas dwutlenku węgla jest pochłaniana przez rośliny lądowe oraz oceany. Jeśli zatem chcemy przewidywać zmiany klimatyczne, to największą niewiadomą jest tutaj to, co zrobią ludzie. Drugą największą niewiadomą jest, jak zachowają się rośliny i oceany - mówi Stephens.
    • przez KopalniaWiedzy.pl
      Samochody przyszłości mogą być napędzane paliwem uzyskiwanym ze... starych gazet. Tak przynajmniej twierdzą uczeni z Tulane University, którzy zidentyfikowali nowy szczep bakterii nazwany TU-103. Bakterie te zmieniają stare gazety w butanol, a uczeni wykorzystują w swoich eksperymentach stare numery Times Picauyne.
      TU-103 to pierwszy znany szczep bakterii, który tworzy butanol wprost z celulozy. Celuloza obecna w zielonych roślinach to najobficiej występujący materiał organicznych. Wielu marzy o tym, by nauczyć się zmieniać ją w butanol. Każdego roku w samych tylko Stanach Zjednoczonych na wysypiska trafiają co najmniej 323 miliony ton materiałów zawierających celulozę - mowi Harshad Velankar, badacz zatrudniony w laboratorium Davida Mullina.
      Naukowcy odkryli TU-103 w zwierzęcych odchodach i opracowali sposób na nakłonienie bakterii do produkcji butanolu. Najważniejsze, że TU-103 tworzy butanol wprost z celulozy - mówi Mullin.
      Nowo odkryta bakteria jako jedyny mikroorganizm produkujący butanol może robić to w obecności tlenu. Inne bakterie tworzące butanol wymagają środowiska beztlenowego, co podnosi koszty produkcji.
      Butanol lepiej sprawdza się w roli biopaliwa, gdyż w przeciwieństwie do etanolu może być spalane w tradycyjnych silnikach, nadaje się do transportu istniejącymi rurociągami, ma słabsze właściwości żrące i można uzyskać z niego więcej energii.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...