Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przyłapany w locie

Recommended Posts

Friedrich Balck z Clausethal Technical University zmierzył prędkość, z jaką korek od szampana wystrzeliwuje z butelki. Wg niego, po porządnym potrząśnięciu ciśnienie wewnątrz sięga 2,5 bara, co po zwolnieniu drucianej blokady rozpędza zatyczkę do 40 km/h.

Jak donosi szwajcarska gazeta Le Matin, podczas eksperymentu Niemiec posłużył się aparaturą fotoelektryczną i akustyczną, a także badał nacisk wywierany przez korek na kartkę papieru. Naukowiec twierdzi, że hipotetycznie korek mógłby osiągnąć szybkość nawet 100 km/h. Wcześniej nie wolno by było jednak wstrząsać butelką. Zamiast tego musiałaby zaś poleżeć przez jakiś czas na słońcu, co nasiliłoby proces fermentacji i zagwarantowało wzrost ciśnienia do 3 barów.

Krytycy wyliczeń Balcka wskazują na kilka istotnych niedomówień. Po pierwsze, nie sprecyzowano temperatury cieczy ani tego, jaki gatunek alkoholu wykorzystano: czy był to prawdziwy szampan, czy zwykłe wino musujące. Po drugie, niektórzy winiarze podają w wątpliwość cytowane przez Niemca ciśnienia. W temperaturze 20 stopni Celsjusza ciśnienie jest ponoć bliższe 6 barom. Ponieważ szampana podaje się schłodzonego do temperatury ok. 5 stopni, warto zwrócić uwagę, jakie warunki panują wtedy w butelce, a te także są odmienne od opisywanych przez Balcka (ciśnienie wynosi nie 2,5, lecz 3 bary).

Tak czy siak podczas odliczania sekund do rozpoczęcia 2009 roku lepiej zachować ostrożność. Poza tym specjaliści odradzają potrząsanie, gdyż alkohol traci wtedy wiele ze swego bukietu smakowo-zapachowego...

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas otwierania butelki szampana powstaje naddźwiękowa fala uderzeniowa, informują naukowcy z Francji i Indii. Symulacje z zakresu dynamiki płynów pozwoliły zbadać tworzenie się, ewolucję i rozpraszanie fali uderzeniowej wydobywającej się z szyjki butelki. Badania nad otwieraniem szampana mogą dostarczyć cennych informacji nt. naddźwiękowego przepływu cieczy zarówno w rakietach kosmicznych, pociskach balistycznych czy turbinach wiatrowych. Znajdą one zastosowania przy produkcji elektroniki, jak i budowie pojazdów podwodnych.
      Chcieliśmy lepiej zrozumieć niespodziewane zjawisko naddźwiękowego przepływu, który ma miejsce podczas otwierania szampana. Mamy nadzieję, że nasze symulacje dostarczą pożytecznych wskazówek naukowcom, którzy mogą potraktować butelkę szampana jak mini laboratorium, mówi współautor badań, Robert Georges z Université de Rennes 1.
      W czasie początkowej fazy odkorkowywania, mieszanina gazów jest częściowo blokowana przez korek, co zapobiega osiągnięciu prędkości dźwięku przez buzujący pod korkiem płyn. W miarę, jak korek opuszcza szyjkę, mieszanina gazów uchodzi z butelki promieniście, równoważąc swoje ciśnienie za pomocą kolejnych fal uderzeniowych. Fale te tworzą wzór diamentów Macha, wzorców typowych dla silników odrzutowych. Symetryczny kształt butelki powoduje, że uchodzący z naddźwiękową prędkością gaz ma kształt korony. W końcu ciśnienie spada na tyle, że prędkość ulatniającego się gazu jest mniejsza niż prędkość dźwięku.
      Teraz naukowcy chcą zbadać inne parametry wpływające na cały proces, takie jak temperatura, objętość, średnica szyjki oraz procesy fizykochemiczne towarzyszące odkorkowywaniu butelki szampana. Chcieliby na przykład sprawdzić, jak tworzenie się kryształów lodu, spowodowane nagłym spadkiem temperatury rozprężających się gazów, wpływa na ich naddźwiękowy przepływ.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowa z Kolonii i Nowego Jorku zaprezentowała oryginalną koncepcję poradzenia sobie z korkami na drogach. Ich problem mógłby zostać rozwiązany, zdaniem naukowców, za pomocą dynamicznie zmieniających się opłat drogowych.
      Peter Cramton i Axel Ockenfels z Uniwersytetu w Kolonii oraz Richard Geddes z Cornell University opisują, w jaki sposób kierowcy płaciliby zmienną stawkę za korzystanie z dróg. Stawka taka byłaby dostosowywana w czasie rzeczywistym do liczby samochodów na drodze oraz do ich typu i ilości emitowanych spalin. Dzięki niej, jak wierzą naukowcy, nie tylko zmniejszyłyby się korki, ale również redukcji uległoby zanieczyszczenie środowiska.
      Szacuje się, że w ubiegłym roku straty gospodarcze spowodowane korkami drogowymi wyniosły w Niemczech 80 miliardów dolarów. Obecnie ci użytkownicy dróg, którzy przyczyniają się do korków, większego zanieczyszczenia środowiska i innych kosztów, płacą tyle samo co ci, którzy takich zjawisk nie wywołują. Bez odpowiednich opłat oznacza to, że społeczeństwo dopłaca do takich kierowców. A to nie jest uczciwe, mówi Ockenfels. Jeśli opłata drogowa będzie dostosowywana do warunków, na przykład w czasie godzin szczytu będzie wyższa niż poza nimi, każdy wybierze tę porę podróży, która mu najbardziej pasuje. To już działa w przypadku systemów nawigacji. To zmniejszy korki na drogach, usprawni ruch i zmniejszy emisję dwutlenku węgla, dodaje Cramton.
      Z technicznego punktu widzenia tego typu system mógłby powstać już dzisiaj. Naukowcy nie obawiają się, że uderzyłby on w uboższych użytkowników dróg. Ceny musiałyby być dynamicznie zmieniane, a kierowca musiałby mieć wybór. Wyobraźmy sobie, że pobieramy opłatę tylko za poruszanie się lewym, zwykle bardzo obleganym, pasem wielopasmowej drogi. Wówczas zwiększy się ruch na prawym pasie. Wszyscy na tym skorzystają, stwierdza Ockenfels.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Skłaniając ludzi do myślenia w szybkim tempie, można ich zachęcić do podejmowania ryzyka. Amerykańscy psycholodzy uważają, że współczesne filmy o wartkiej akcji czy migające światła w kasynie wywierają na nas taki właśnie wpływ.
      W ramach wcześniejszych badań prof. Emily Pronin z Princeton University wykazała, że można zmienić tempo myślenia i że myślenie w żywszym tempie wprowadza ludzi w dobry nastrój. Wiedząc to, Amerykanka zastanawiała się, czy myśląc szybko, jesteśmy bardziej skłonni podejmować ryzyko. Stąd pomysł na 2 eksperymenty.
      W 1. uczestnicy odczytywali na głos stwierdzenia wyświetlane na ekranie komputera. Prędkość wyświetlania można było kontrolować i czasem była ona 2-krotnie większa od zwykłego tempa czytania, a czasem 2-krotnie mniejsza. Później ochotnicy mieli nadmuchać serię wirtualnych balonów. Każde dmuchnięcie dodawało do banku kolejne 5 centów, jednocześnie zwiększało się jednak ryzyko pęknięcia. Jeśli dana osoba przestawała dmuchać przed pęknięciem, zachowywała zebrane pieniądze. Jeśli nie, ulatniały się one razem z powietrzem z pękniętego balonu. Okazało się, że osoby, które zmuszono do czytania z prędkością większą od przeciętnej, dmuchały dłużej niż reszta i z większym prawdopodobieństwem traciły pieniądze.
      W drugim eksperymencie badani oglądali 3 filmiki wideo. Każdy przedstawiał neutralne sceny - np. wodospady, iguany czy miasta - ale zróżnicowano je ze względu na średnią długość ujęcia. Tempo było więc bardzo duże (jak w klipach muzycznych), średnie (jak w typowym filmie hollywoodzkim) albo plasowało się między nimi. Po obejrzeniu nagrań uczestnicy studium wypełniali kwestionariusz z pytaniami dotyczącymi prawdopodobieństwa angażowania się w najbliższym półroczu w ryzykowne zachowania, np. seks bez zabezpieczeń. I tym razem stwierdzono, że im większe tempo filmu i myślenia, tym większa skłonność do podejmowania ryzyka.
    • By KopalniaWiedzy.pl
      Poruszając się z prędkością 2 m/s, czyli 7,19 km/h, ludzie wolą biec niż iść. Doktorzy Gregory Sawicki i Dominic Farris z Uniwersytetu Północnej Karoliny uważają, że dzieje się tak, gdyż przy takiej szybkości podczas biegu lepiej wykorzystujemy kluczowy mięsień łydki.
      Naukowcy, których artykuł ukazał się w Proceedings of the National Academy of Sciences (PNAS), posłużyli się ultrasonografią, filmowaniem ruchu szybką kamerą oraz bieżnią mierzącą nacisk. W ten sposób mierzyli zachowanie mięśni łydki podczas biegu i chodzenia.
      Niewielka głowica ultrasonograficzna przymocowywana z tyłu nogi pokazywała w czasie rzeczywistym, jak mięsień dostosowuje się do chodu i biegu z różną prędkością. Szybkie zdjęcia zademonstrowały, że głowa przyśrodkowa mięśnia brzuchatego działa jak sprzęgło uruchamiające się szybko po rozpoczęciu chodzenia. Mięsień brzuchaty przytrzymuje jak linka jeden z końców ścięgna Achillesa, gdy przekazywana jest do niego energia do rozciągania. Później do gry włącza się samo ścięgno, które podczas odrzutu uwalnia zmagazynowaną energię, wspomagając w ten sposób ruch.
      Studium ujawniło, że gdy mięsień coraz szybciej zmienia swoją długość, dostarcza coraz mniej mocy, co oznacza obniżenie ogólnej wydajności. Kiedy jednak ludzie zaczynają biec z prędkością ok. 2 m/s, mięśnie zwalniają: zmiana długości zachodzi wolniej, zapewniając większą moc przy słabszej pracy.
      Techniki ultrasonograficzne pozwalają oddzielić od siebie ruchy poszczególnych mięśni podudzia. Dotąd nie były, niestety, wykorzystywane w takim kontekście - podkreśla Farris. Badanie wyjaśnia, czemu superszybki chód jest ograniczony właściwie do olimpiad i innych zmagań sportowych. Mięśnie pracują zbyt nieefektywnie, dlatego ciało przestawia się na bieg. Rosną wtedy skuteczność zarządzania energią i wygoda.
      W miarę jak idziemy coraz szybciej, miesień nie jest w stanie dopasować się do prędkości ruchu. Kiedy jednak dokonuje się przejście od chodu do biegu, ten sam mięsień staje się niemal statyczny i nie musi zmieniać swojego zachowania w znacznym stopniu, gdy biegacz coraz bardziej się rozpędza (choć nie testowaliśmy go podczas sprintów) - wyjaśnia Sawicki.
       
       
    • By KopalniaWiedzy.pl
      Plemniki golców (Heterocephalus glaber) są bardzo zniekształcone i wolne. Biolodzy sądzą, że dzieje się tak z powodu braku konkurencji między gametami. Dominująca samica - królowa - decyduje, z którym samcem chce kopulować i tłumi instynkty reprodukcyjne pozostałych.
      Zespół Liany Maree z University of the Western Cape pobrał próbki spermy trzymanych w niewoli golców. Testy ujawniły wiele nieprawidłowości. Zdolność poruszania się zachowało zaledwie 7% plemników, w dodatku pływały one z prędkością zaledwie ok. 35 mikrometrów na sekundę (najwolniej u wszystkich ssaków).
      Stwierdzono skrajny polimorfizm plemników, a większość sklasyfikowano jako anormalne. Główki plemników przyjmowały wiele różnych kształtów. Były kuliste, owalne, wydłużone, asymetryczne i amorficzne. Chromatyna w jądrze wydawała się nieregularna i zdezorganizowana (między jej skupiskami znajdowało się np. dużo wolnej przestrzeni). We wstawce występowało od 5 do 7 okrągłych lub owalnych mitochondriów. W takich okolicznościach nie powinno dziwić, że bez energii do napędu plemniki golców poruszają się tak wolno. Dla porównania: ludzkie plemniki w sekundę przebywają ok. 0,1 mm.
      Golec jest dobrym modelem tego, co dzieje się z ludźmi - uważa Maree, nawiązując do tendencji monogamicznych w obrębie naszego gatunku. Wcześniejsze badania wykazały, że u człowieka porusza się ok. 60% plemników, podczas gdy u bardziej promiskuitycznych gatunków odsetek ten wzrasta do 95%.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...