Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Zastrzyki z naturalnym hormonem stresu pozwalają, przynajmniej u myszy, złagodzić objawy zespołu stresu pourazowego.

Badacze z centrum medycznego University of Texas Southwestern umieszczali gryzonie w plastikowych pudełkach i lekko porażali je prądem.

Kilka dni później myszy znowu wkładano do pudełek. Naukowcy określali, jak bardzo się boją, mierząc czas zastygania w bezruchu. Po upływie paru minut gryzoniom wstrzykiwano kortykosteron, hormon sterydowy wydzielany przez korę nadnerczy.

Gdy po upływie kolejnych kilku dni myszy znowu trafiały do wzbudzających złe skojarzenia pudełek, wykazywały oznaki znacznie mniejszego strachu. Im większą dawkę kortykosteronu podano danemu osobnikowi, tym mniej się bał.

Podanie zastrzyku przed ponownym włożeniem do pudełka nie zmniejszało strachu odczuwanego podczas testów przeprowadzanych dzień później. Jeśli jednak zastrzyki wykonywano przez 4 dni lub bezpośrednio przed lub po drugiej "wizycie" w pudełku, strach odczuwany następnego dnia ulegał zmniejszeniu.

Badacze uważają, że za obserwowane zjawisko odpowiada mechanizm tzw. wygaszania (wydzielanie kortykosteronu powoduje stopniowe zanikanie wspomnień).

Wydaje się, że kortykosteron stymuluje tworzenie się nowych wspomnień, które konkurują ze wspomnieniami budzącymi lęk, co obniża negatywne znaczenie emocjonalne tych ostatnich — powiedział w oświadczeniu profesor psychiatrii i neurologii na University of Texas Southwestern, Craig Powell.

Wydzielanie się hormonów stresu podczas przywoływania wzbudzających lęk wspomnień może być naturalnym mechanizmem obniżania znaczenia negatywnych wydarzeń z przeszłości — tłumaczy należąca do zespołu naukowców Jacqueline Blundell. Pacjenci z zespołem stresu pourazowego wykazują przytępioną reakcję hormonalną, co skutkuje niewygasaniem złych wspomnień z upływem czasu.

O szczegółach badań można przeczytać w wydaniu Journal of Neuroscience z 13 września.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Najwcześniejsze wspomnienia, jakie przechowujemy w naszej pamięci, pochodzą przeważnie z czasu, gdy mieliśmy 2,5 roku, donoszą autorzy najnowszych badań. Odkrycie, o którym poinformowano na łamach recenzowanego pisma Memory, przesuwa pamięć o najwcześniejszych wydarzeniach z życia o cały rok.
      Autorka badań, doktor Carole Peterson z Memorial University of Newfoundland przeprowadziła analizę literatury specjalistyczne oraz publikowanych i niepublikowanych danych, które były zbierane przez nią i jej współpracowników w latach 1999–2020.
      To, z jakiego okresu pochodzą nasze najwcześniejsze wspomnienia jest płynną kwestią. Gdy zapytamy ludzi o to, jaki jest ich pierwsze wspomnienie, okazuje się, że nie jest to żadna ustalona granica. Wygląda to raczej jak zbiór wspomnień. Ludzie sobie przypominają coś, co uważają za najwcześniejsze wspomnienie, a gdy zadajemy im dodatkowe pytania, gdy damy im szansę, okazuje się, że są w stanie sięgnąć pamięcią dalej i dalej w czasie, mówi Peterson. Sądzimy, że pamiętają rzeczy z okresu, gdy mieli 2 lata. Ale nie zdają sobie z tego sprawy.
      Takie coraz głębsze sięganie do pamięci jest możliwe z dwóch powodów. Po pierwsze, jak już wspomniano, tylko nam się wydaje, że to co przypomnieliśmy sobie na wstępie. Po drugie, udokumentowaliśmy, że ludzie źle datują wczesne wspomnienia. Cały czas okazywało się, że badani twierdzili, że rzeczy, które sobie przypominali, pochodziły z czasu, gdy byli starsi, niż w rzeczywistości, dodaje doktor Peterson.
      Peterson od ponad 20 lat specjalizuje się w badaniach nad pamięcią. Szczególnie skupia się nad umiejętnością dzieci i dorosłych do przywołania najwcześniejszych wspomnień. W ramach swoich badań pracowała z 992 ochotnikami, a wspomnienia 697 z nich porównano ze wspomnieniami ich rodziców. Okazało się, że najwcześniejsze wspomnienia z dzieciństwa – co potwierdzili rodzice badanych – pochodzą z wcześniejszego okresu niż sądzili badani.
      Zjawisko, które zauważyła Peterson, znajduje potwierdzenie w innych badaniach. Okazało się bowiem, że gdy dzieci miały przywołać najwcześniejsze wspomnienia 2 i 8 lat po tym, jak zapamiętane wydarzenia miały miejsca, potrafiły przywołać to samo wspomnienie, ale gdy minęło od niego 8 lat, dzieci uważały, że były starsze w momencie, gdy zdarzenie miało miejsce. Po ośmiu latach od wydarzenia, dzieci sądziły, że były o rok starsze niż w rzeczywistości były, gdy wydarzenie miało miejsce, zauważa uczona.
      Petersen mówi tutaj o efekcie teleskopu. Gdy przywołujemy wydarzenia, które miały miejsce dawno temu, to tak, jakbyśmy patrzyli przez teleskop. Im bardziej odległe wspomnienie, tym bliższe się wydaje. Okazuje się, że mamy tendencję do przesuwania najodleglejszych wspomnień o około rok, do czasu, gdy mieliśmy 3,5 roku. Okazało się jednak, że efekt ten nie dotyczy wydarzeń, które miały miejsce gdy byliśmy w wieku 4 lat i starszym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W modelu mysim immunosupresja związana z zakażeniem pierwotniakami Toxoplasma gondii zmniejsza liczbę blaszek amyloidowych, a także poprawia wyniki osiągane w testach behawioralnych, np. labiryncie wodnym.
      Eun-Hee Shin ze College'u Medycznego Narodowego Uniwersytetu Seulskiego, główna autorka artykułu opublikowanego w PLoS ONE, postanowiła sprawdzić, w jaki sposób hamowanie procesu wytwarzania przeciwciał i komórek odpornościowych przez T. gondii wpłynie na patogenezę i postępy choroby Alzheimera. Do badań wybrano szczep myszy Tg2576. Gryzonie zainfekowano tworzącym cysty szczepem ME49.
      Badano poziom mediatorów zapalnych (tlenku azotu(II) i interferonu gamma) oraz cytokin przeciwzapalnych (interleukiny 10 oraz transformującego czynnika wzrostu beta). Oceniano też uszkodzenia neuronów i odkładanie złogów beta-amyloidu w tkankach mózgu.
      Poza tym Koreańczycy przeprowadzili testy behawioralne, w których brały udział zarówno myszy Tg2576 zakażone T. gondii, jak i wolne od zakażenia (grupa kontrolna). Zwierzęta musiały pokonywać labirynt wodny Morrisa (gdzie w dużym okrągłym basenie pod powierzchnią wody ukryta jest platforma) oraz lądowy w kształcie litery Y.
      Okazało się, że po zakażeniu pierwotniakiem poziom interferonu gamma nie ulegał zmianie, za to stężenia cytokin przeciwzapalnych były o wiele wyższe u myszy z grupy eksperymentalnej. W korze i hipokampie gryzoni zainfekowanych T. gondii znacznie zmniejszało się odkładanie beta-amyloidu.
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się wykazać, że kora mózgowa, obszar uznawany przede wszystkim za siedlisko wyższych funkcji poznawczych, pełni również ważną rolę w uczeniu emocjonalnym.
      Wyniki studium naukowców z Institut National de la Santé et de la Recherche Médicale (INSERM) i szwajcarskiego Instytutu Badań Biomedycznych im. Friedricha Mieschera (Friedrich Miescher Institute of Biomedical Research, FMI) ukazały się w piśmie Nature.
      Zaburzenia lękowe występują u ok. 10% dorosłych. Rola, jaką odgrywa w nich ciało migdałowate, jest dobrze znana. Tego samego nie można już jednak powiedzieć o innych częściach mózgu. Wiedząc, że przed przestraszeniem się musimy poczuć zapach, coś usłyszeć lub zobaczyć, szwajcarsko-francuski zespół zajął się wizualizowaniem ścieżki, za pośrednictwem której przetwarzane głównie przez korę bodźce czuciowe oddziałują na mózg w czasie uczenia się strachu.
      Podczas eksperymentów myszy uczyły się kojarzyć dźwięk z przykrymi bodźcami, przez co sam dźwięk stawał się dla nich nieprzyjemny (zachodziło warunkowanie klasyczne). By prześledzić aktywność neuronów podczas uczenia, naukowcy zastosowali metodę zwaną dwufotonowym obrazowaniem wapnia. Jest to stosunkowo nowy rodzaj mikroskopii, dzięki któremu można obejrzeć głębsze warstwy tkanki. Bazuje on na tym, że gdy komórka nerwowa jest aktywowana, przebiega przez nią fala wapnia. Wstrzyknięcie pochłanianego przez neurony znacznika pozwala ustalić, co właściwie (i gdzie) dzieje się w korze w czasie emocjonalnego uczenia.
      W zwykłych okolicznościach neurony kory słuchowej są silnie hamowane. Podczas uczenia strachu aktywowany jest mikroobwód rozhamowujący. Uwolnienie acetylocholiny w korze umożliwia chwilową aktywację tego mikroukładu i rozhamowanie pobudzających neuronów projekcyjnych z długimi aksonami. Z tego powodu gdy zwierzę słyszy podczas uczenia dźwięk, bodziec jest przetwarzany intensywniej niż zwykle, co oczywiście, ułatwia tworzenie wspomnień.
      Aby potwierdzić swoje odkrycia, akademicy posłużyli się kolejną nowoczesną techniką - optogenetyką (łączy ona genetykę z optyką i pozwala na kontrolę neuronów za pomocą wiązek lasera). Rozhamowanie zaburzano wybiórczo podczas uczenia. Gdy następnego dnia badano pamięć myszy, okazało się, że była ona poważnie zaburzona. Oznacza to, że rozhamowanie korowe odgrywa kluczową rolę w uczeniu strachu.
    • przez KopalniaWiedzy.pl
      Eksperymenty na szczurach pokazały, że pamięć jest zorganizowana w nieciągłe (dyskretne) 125-milisekundowe pakiety, umożliwiając gładkie przejścia od jednego wspomnienia do drugiego.
      Wyniki badań naukowców z Norweskiego Uniwersytetu Nauki i Technologii (Norwegian University of Science and Technology, NTNU) ukazały się w piśmie Nature. Autorzy artykułu zastanawiali się, co dzieje się w mózgu w czasie przechodzenia od jednego wspomnienia do następnego, np. gdy po przebudzeniu nie wiemy, gdzie jesteśmy i potrzebujemy chwili, by odzyskać orientację.
      Norwegowie zastosowali metodę, która pozwalała na dokonywanie pomiarów na poziomie milisekund. Odkryli, że pamięć jest podzielona na pakiety, co można porównać do światła (przez to, że składa się z fotonów, ma naturę ziarnistą, czyli skwantowaną). Każde wspomnienie trwa 125 milisekund, co oznacza, że mózg może się przełączać między różnymi wspomnieniami 8 razy na sekundę.
      Mózg nigdy nie miesza ze sobą różnych miejsc i wspomnień, choć czasem możemy to postrzegać w ten sposób. Dzieje się tak, ponieważ procesy zachodzące w głowie podczas poszukiwania mapy, gdzie się znajdujemy, zachodzą tak szybko, że nie zauważamy, że w rzeczywistości przełączamy się między różnymi mapami. Gdy czujemy się zdezorientowani, dzieje się tak dlatego, że w mózgu współzawodniczą dwa wspomnienia, a może więcej niż dwa – wyjaśnia prof. May-Britt Moser.
      Zanim akademicy do tego doszli, przeprowadzili szereg żmudnych doświadczeń. Skonstruowali specjalne pudełko, które pozwalało "teleportować" szczury z jednego miejsca w drugie. Badanie aktywności elektrycznej mózgu pozwalało stwierdzić, jak mózg zarządza pamięcią miejsc, kiedy doświadcza nagłej zmiany lokalizacji. May-Britt Moser wyjaśnia, że pudełko skonstruowano w taki sposób, że cechy otoczenia, na podstawie których zwierzęta stwierdzają, gdzie się znajdują, były de facto różnymi schematami oświetlenia. Wystarczyło więc nacisnąć guzik, by zmienić ustawienia. Szczury przez długi czas uczono, że poszczególne schematy oświetlenia stanowią różne pomieszczenia.
      Monitorując aktywność mózgu, naukowcy wiedzieli, że gryzonie uwierzyły, że mają do czynienia z różnymi pokojami. Gdy włączaliśmy jeden układ świateł, widzieliśmy bardzo specyficzny wzorzec aktywności w neuronach części szczurzego mózgu, która odpowiada za tworzenie map. Kiedy przełączaliśmy światła, wzorzec zmieniał się na zupełnie inny.
      Szczury były zakłopotane, całkiem jak zagubiony człowiek, lecz mózg nigdy nie mieszał map. Przełączał się w tę i z powrotem między mapami reprezentującymi pomieszczenia A i B, ale nigdy nie znajdował się w pozycji pomiędzy. Mózg może się przełączać między dwiema mapami, ale jest to zawsze stan "to lub to", miejsce A lub miejsce B.
    • przez KopalniaWiedzy.pl
      Badacze z Uniwersytetu Południowej Kalifornii odkryli, że gdy patrzymy na jakiś obiekt, nasz mózg przetwarza jego wygląd, a jednocześnie odświeża informacje, jak to jest, gdy się tego dotyka. Związek między wzrokiem a dotykiem jest tak silny, że analizując dane pochodzące wyłącznie z części mózgu zawiadującej dotykiem, komputer mógł wskazać, na co człowiek patrzył.
      Wyniki dotyczących interakcji zmysłów i pamięci dociekań zespołu Hanny i Antonia Damasio ukazały się we wrześniowym numerze pisma Cerebral Cortex. Naukowcy poprosili grupę osób o obejrzenie 5 filmików wideo. Przedstawiały one dłonie dotykające różnych obiektów. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) zbadano obszar mózgu związany z przetwarzaniem wrażeń dotykowych. Gdy uzyskane w ten sposób dane przeanalizowano z wykorzystaniem specjalnego oprogramowania, tylko na tej podstawie komputer był w stanie wskazać, który z klipów był oglądany.
      Jak wyjaśnia główny autor opisywanego studium Kaspar Meyer, wyobrażając sobie dotyk zimnego metalu i ciepłego zwierzęcego futra, większość z nas dosłownie odczuwa te wrażenia za pomocą dotyku umysłu. To samo działo się z naszymi badanymi, kiedy pokazywaliśmy im nagrania wideo rąk dotykających przedmiotów. Nasze badania pokazują, że czucie dzięki dotykowi umysłu aktywuje te same rejony mózgu, co rzeczywisty dotyk. Dzieje się tak, gdyż mózg przechowuje wspomnienia wrażeń czuciowych i odtwarza je pod wpływem odpowiadającego im obrazu.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...