Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Badacze z Uniwersytetu Rochester zaprojektowali "genetyczną bombę", która umożliwia masową produkcję toksyn w komórkach nowotworowych. Co ważne, zdrowa tkanka pozostaje praktycznie nietknięta.

Nowatorskie rozwiązanie wykorzystuje właściwości genu Rad51, którego podwyższona aktywność (ekspresja) w dzielących się szybko komórkach nowotworowych jest znana już od kilku lat. Naukowcy, prowadzeni przez dr Verę Gorbunovą, zmodyfikowali tę sekwencję, usuwając z niej fragmenty odpowiedzialne za ograniczane jej aktywności.

Uzyskany w ten sposób gen wciąż był uruchamiany w intensywnie dzielących się komórkach nowotworowych, lecz, pozbawiony "hamulca", podlegały w nich znacznie silniejszej ekspresji. Komórki zdrowe niemal w ogóle nie korzystają z Rad51, ponieważ intensywność podziałów komórkowych w zdrowej tkance jest wielokrotnie niższa.

Aktywność Rad51 w typowym nowotworze jest około pięciokrotnie wyższa, niż w zdrowej tkance, lecz dzięki usunięciu sekwencji ograniczającej ekspresję tego genu udało się uzyskać różnice aktywności rzędu kilku, a nawet kilkunastu tysięcy razy

Jak wykorzystać unikalną cechę zmodyfikowanego genu? Badacze z Rochester uznali, że najlepiej będzie połączyć ze sobą odpowiedni fragment Rad51 oraz sekwencję kodującą bakteryjną toksynę błoniczą, produkowaną przez bakterie z gatunku Corynebacterium diphteriae. Uzyskano w ten sposób gen, którego produktem była silna trucizna, lecz aktywował się on wyłącznie w komórkach nowotworowych, prowadząc do ich zniszczenia.

Wstępne testy wykazały, że pomysł doskonale sprawdza się w praktyce. W warunkach laboratoryjnych udało się skutecznie zlikwidować komórki kilku nowotworów, m.in. włókniakomięsaka oraz raka piersi i raka szyjki macicy. Testy przeprowadzone równolegle na zdrowych komórkach nie wywołały w nich większych szkód.

Obecnie badacze z Rochester pracują nad stworzeniem wirusa, który pozwoli na dostarczenie terapeutycznego genu do możliwie wielu komórek w żywym organizmie. Jeżeli się to uda i wydajność procesu będzie dostatecznie wysoka, być może pewnego dnia leczenie nowotworu będzie się ograniczało do prostych wstrzyknięć "genetycznej bomby". Zanim jednak stanie się to możliwe, konieczne będą wieloletnie badania.

Share this post


Link to post
Share on other sites
Komórki zdrowe niemal w ogóle nie korzystają z Rad51
Testy przeprowadzone równolegle na zdrowych komórkach nie wywołały w nich większych szkód.

 

Ciekawe jak te mniejsze szkody wpływają na komórki które niemal w ogóle nie korzystają z Rad51 w żywym i zdrowym organizmie.

Share this post


Link to post
Share on other sites

Toksyn będzie niewiele, bo masa guza jest znikoma w porównaniu z całym organizmem. A jeśliby nawet do poważniejszego zatrucia doszło, to i tak lepsze to niż nowotwór. Obecnie stosowane leki mają znacznie poważniejsze skutki uboczne.

Share this post


Link to post
Share on other sites

Mnie ciągle martwi jedno.

 

Poznajemy całe zatrzęsienie genów. Naprawdę jest ich mnóstwo, KW opisuje ledwie mały ułamek tego, co się odkrywa (i nic dziwnego, bo szczegóły są nudne jak diabli :) z doświadczenia zapewniam ;) ). A mimo to ciągle stoimy w miejscu, bo mniej więcej od 1990 roku nikt nie wymyślił żadnej nowej, skutecznej metody dostarczania genów do komórek, nie wspominając już o metodach, które byłyby jednocześnie skuteczne i swoiste, tzn. dostarczałyby ten gen wyłącznie do określonego typu komórek.

 

A dlaczego tak się dzieje, że XXI wiek trwa w najlepsze, a my ciągle jesteśmy w lesie i mamy wyłącznie wspaniałe pomysły zapisane na papierze? Bo w 1999 roku JEDEN PACJENT zmarł z powodu nadmiernej reakcji na adenowirusa, który miał dostarczyć gen potrzebny do wyleczenia go z jego choroby. Od tego momentu jakiekolwiek testy z wykorzystaniem terapii genowej są zabronione. Jak sobie pomyślę, ilu ludzi ginie każdego roku z powodu nowotworów lub z powodu niepożądanych efektów terapii, to niewyobrażalna wściekłość mnie ogarnia. Pozwala się na standardową chemioterapię, a nie pozwala się nawet na te adenowirusy (swoją drogą, są to wirusy odpowiedzialne za typowe przeziębienie, więc w czym problem?! Ludzie to przeżywają).

 

Nie, żebym nie współczuł temu jednemu pacjentowi, bo współczuję, tym bardziej że był to młody chłopak. Ale dlaczego jest tak, że w przypadku nowych terapii decyduje precedens, a w przypadku tych już zaakceptowanych nikt nie przejmuje się setkami ofiar terapii, która okazała się trucizną? Czasem naprawdę mam wrażenie, że testy kliniczne w przypadku chorób takich, jak nowotwory, to najgłupszy pomysł, na jaki ktokolwiek kiedykolwiek mógł wpaść. Pacjenci powinni mieć prawo do absolutnie dowolnego wyboru terapii, koniec, kropka. Pojęcie "błędu w sztuce lekarskiej" powinno być w tym wypadku anulowane, a pacjenci powinni mieć prawo decydować o własnym losie.

 

 

*tak, to był jeden z tych momentów, kiedy wypowiadam się bardzo niemerytorycznie i emocjonalnie (chociaż mam tę cichą nadzieję, że mówię z sensem). Rzadko mi się to zdarza, ale raz na jakiś czas mnie trafia, jak sobie uświadamiam, jak bardzo wiąże się ręce osobom pracującym nad terapiami biologicznymi.

Share this post


Link to post
Share on other sites

W jaki sposób terapia jest zabroniona? Tzn, czy tylko w Europie, czy dotyczy to całego świata? Bo ciężko mi sobie wyobrazić ten zakaz.

Share this post


Link to post
Share on other sites

Obecnie w USA obowiązuje moratorium na terapię genową, o ile pamiętam do końca 2009 roku (czyli przez 10 lat od tamtego przypadku). Europa boi się ją zastosować (choć formalnie, o ile wiem, jest dozwolona), jeżeli wcześniej nie zrobią tego Amerykanie - po prostu nie chcą być pierwsi (co jest oczywistą głupotą, bo mamy szansę na dokonanie przełomu i przegonienie USA w technologicznym i naukowym wyścigu - ot, uroki eurokołchozu). Reszta krajów podchodzi do sprawy bardzo ostrożnie, więc fakty są takie, że albo kraj nie ma technologii, by przeprowadzać terapię genową, albo obowiązuje w nim (mniej lub bardziej formalny) zakaz.

 

W ogóle przepraszam za skrót myślowy, z tym zakazem miałem na myśli konkretnie USA.

Share this post


Link to post
Share on other sites

inna sprawa ze do tej pory terapia genowa odniosła jakiś kolwiek skutek chyba tylko w leczeniu czerniaka a to i tak niewielki

Share this post


Link to post
Share on other sites
Guest macintosh

inna sprawa ze do tej pory terapia genowa odniosła jakiś kolwiek skutek chyba tylko w leczeniu czerniaka a to i tak niewielki

za***isty pesymizm

Share this post


Link to post
Share on other sites

Obecnie w USA obowiązuje moratorium na terapię genową, o ile pamiętam do końca 2009 roku (czyli przez 10 lat od tamtego przypadku). Europa boi się ją zastosować (choć formalnie, o ile wiem, jest dozwolona), jeżeli wcześniej nie zrobią tego Amerykanie - po prostu nie chcą być pierwsi (co jest oczywistą głupotą, bo mamy szansę na dokonanie przełomu i przegonienie USA w technologicznym i naukowym wyścigu - ot, uroki eurokołchozu). Reszta krajów podchodzi do sprawy bardzo ostrożnie, więc fakty są takie, że albo kraj nie ma technologii, by przeprowadzać terapię genową, albo obowiązuje w nim (mniej lub bardziej formalny) zakaz.

 

W ogóle przepraszam za skrót myślowy, z tym zakazem miałem na myśli konkretnie USA.

Dziwna sprawa. Czyli jeżeli w Europie znalazłby się milioner, któremu ta terapia mogłaby pomóc, i pokryłby koszty ów przeprowadzenia, to nie byłoby żadnych innych kłopotów? Swoją drogą dziw, że jeszcze się nie znalazł...

 

A co do samej metody, te wirusy zabiły tego chłopaka, ponieważ jego organizm był do tego stopnia wyniszczony przez nowotwór?

Share this post


Link to post
Share on other sites

Tamten chłopak był leczony na inną chorobę. O ile pamiętam, była to mukowiscydoza, ale nie pamięŧam teraz dokładnie. W każdym razie na pewno nie był to nowotwór.

 

A co do Europy - nawet gdyby znalazł się milioner, jeszcze nie masz gwarancji, że jakikolwiek urząd pozwoliłby na takie leczenie. Tak naprawdę kasa jest sprawą drugorzędną, tak myślę - problem jest właśnie z oporem urzędników.

Share this post


Link to post
Share on other sites

A co do Europy - nawet gdyby znalazł się milioner, jeszcze nie masz gwarancji, że jakikolwiek urząd pozwoliłby na takie leczenie. Tak naprawdę kasa jest sprawą drugorzędną, tak myślę - problem jest właśnie z oporem urzędników.

I tu wychodzi genialna nieudolność całego systemu. Twoje zdrowie jest własnością społeczeństwa, które wykłada nań kasę - oczywiście nie generalizuję, w tym przypadku jednak system zdaje się być niedopracowany :-\

Share this post


Link to post
Share on other sites

to może brzmi trochę jak jakaś teoria spiskowa (choć daleko jestem od tego) ale opracowywanie terapii genowych jest nieopłacalne...

kasę na badania wykładają koncerny farmaceutyczne, żadnemu koncernowi nie będzie się opłacało opracowanie prostej terapii genowej która pozwalała by na rewersję nowotworu i w związku z tym kasy chętnie nie wyłożą... dużo bardziej opłacalną jest kuracja tradycyjna chemioterapią którą trzeba przyjmować wielokrotnie i która ma miejsce z wykorzystaniem różnych związków

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na University of Oxford powstał tani i minimalnie inwazyjny test, za pomocą którego z próbki krwi można określić, czy u pacjenta z niespecyficznymi objawami rozwija się nowotwór i czy dał on przerzuty. Uczeni opisali na łamach Clinical Cancer Research wyniki badań, w czasie których nowy test został sprawdzony na 300 osobach skarżących się na niespecyficzne objawy, w tym zmęczenie czy utratę wagi.
      Celem badań było sprawdzenie, czy test jest w stanie odróżnić osoby z nowotworem od osób zdrowych. Wyniki pokazały, że jest on w stanie wykryć 19 na 20 osób, u których rozwija się nowotwór. Zaś u osób z nowotworem przerzuty zostały wykryte z dokładnością 94%. Jak twierdzą twórcy testu, jest to pierwsze tego typu  narzędzie, które tylko z próbki krwi – bez wcześniejszej znajomości rodzaju nowotworu – jest w stanie określić, czy nowotwór przerzutuje.
      Nowy test, w przeciwieństwie do innych, wykrywających materiał genetyczny guzów, korzysta z metabolomiki magnetycznego rezonansu jądrowego (NMR), w której za pomocą silnych pól magnetycznych i fal radiowych określa się poziom metabolitów we krwi.
      Zdrowi ludzie, osoby cierpiące na nowotwory oraz osoby z przerzutującymi nowotworami mają różne profile metaboliczne. Można je analizować i na tej podstawie stawiać diagnozę.
      Komórki nowotworowe mają unikatowe profile metabolomiczne, zależne od zachodzących w nich procesów metabolicznych. Dopiero zaczynamy rozumieć, jak metabolity różnych guzów mogą być wykorzystywane w roli biomarkerów do wykrywania nowotworów. Już wcześniej wykazaliśmy, ze technika ta może zostać wykorzystana do sprawdzenia, czy u pacjentów ze stwardnieniem rozsianym dochodzi do postępów choroby. I można tego dokonać zanim takie postępy zauważy przeszkolony lekarz. To bardzo ekscytujące, że ta sama technologia pomoże w diagnostyce nowotworów, mówi doktor James Larkin z University of Oxford.
      Szybki i niedrogi test daje nadzieję na zdiagnozowanie nowotworu na wczesnym stadium, gdy szanse wyleczenia są największe. Szczególnie u pacjentów z niespecyficznymi objawami.
      Praca ta opisuje nowy sposób diagnozowania nowotworu. Naszym celem jest opracowanie testu, którego przeprowadzenie będzie mógł zlecić każdy lekarz pierwszego kontaktu. Sądzimy, że metabolomiczne analizy krwi pozwolą na dokładne, szybkie i tanie diagnozowanie osób z podejrzeniem nowotworu. Umożliwią też dokładniejsze określenie, któremu pacjentowi należy udzielić natychmiastowej pomocy, a który może otrzymać ją w późniejszym terminie, dodaje główny badacz doktor Fay Probert.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy wciąż szukają nowych metod diagnostycznych, pozwalających na skuteczniejsze leczenie raka piersi. W tym kierunku badania prowadzi również dr Aleksandra Markiewicz, szukając w organizmie chorych źródła informacji, które pozwolą prognozować ich podatność na terapie lekowe.
      Aleksandra Markiewicz z Zakładu Onkologii Translacyjnej Instytutu Biotechnologii Medycznej i Onkologii Doświadczalnej Uniwersytetu Gdańskiego i Gdańskiego Uniwersytetu Medycznego w ramach pracy zespołu od kilkunastu lat zajmuje się analizą krążących komórek nowotworowych od chorych na raka piersi.
      W ramach tych badań opracowano już metodę pozwalającą na izolację i analizę krążących komórek nowotworowych na poziomie pojedynczych komórek. Teraz naukowcy - dzięki współpracy z chirurgami, onkologami i patomorfologami - zbiorą materiał od kobiet chorych na raka piersi w trakcie leczenia, wyizolują krążące komórki nowotworowe i krążące DNA nowotworowe, aby przygotować je do analiz genomicznych. O pracach informował Uniwersytet Gdański na swoich stronach internetowych.
      W prowadzonych badaniach będziemy poszukiwali we krwi chorych na raka piersi krążących komórek nowotworowych oraz krążącego DNA nowotworowego, czyli komórek i ich materiału genetycznego, które zostały uwolnione do krwi z guza pierwotnego bądź przerzutów – tłumaczy w rozmowie z serwisem Nauka w Polsce dr Aleksandra Markiewicz.
      Zidentyfikowane krążące komórki nowotworowe naukowcy pobiorą i zbadają pod kątem obecności kilkuset zmian (mutacji) w ich DNA, które mogą świadczyć o wrażliwości czy oporności na leczenie. Specjalistyczny sprzęt, który pozwoli sprawniej pobierać pojedyncze komórki od chorych na raka piersi, a także wszystkie materiały i odczynniki niezbędne do izolacji i obróbki molekularnej tych komórek z pobranych próbek, zostanie zakupiony w ramach dofinansowania z programu OPUS 20 + LAP.
      Naukowcy sprawdzą też, czy podobny profil zmian obecny jest w guzie pierwotnym i krążącym DNA nowotworowym. Te dane chcemy dodatkowo skorelować z identyfikacją mechanizmów oporności nowotworu na leczenie – zapowiada dr Markiewicz.
      Obecność krążących komórek nowotworowych w organiźmie jest czynnikiem informującym o złej prognozie chorych. Jak tłumaczyła dr Markiewicz, wewnętrzna agresywność krążących komórek nowotworowych może być różna w zależności od ich charakterystyki molekularnej. Ta różnorodność sprawia też, że większość metod nie pozwala na wychwycenie szerokiego spektrum krążących komórek nowotworowych, przez co nasza wiedza na ich temat jest wciąż niewystarczająca – przyznała badaczka. Dlatego naukowcy chcą izolować wiele fenotypów (rodzajów) tych komórek i identyfikować charakterystyczne dla nich zmiany w DNA, które mogą być związane z ich agresywnością, bądź być celami terapii ukierunkowanych molekularnie – tłumaczy.
      Ponieważ krążące komórki nowotworowe są rzadkie i heterogenne, chcemy je profilować na poziomie każdej pojedynczej zidentyfikowanej komórki, co wymaga bardzo zaawansowanych metod profilowania – powiedziała dr Markiewicz.
      Badania tego typu są niezbędne, żeby pokazać, jak ewoluuje choroba nowotworowa w trakcie leczenia, i jakie parametry są najbardziej pomocne w ocenie skuteczności leczenia i ryzyka nawrotu - najszybciej, jak to możliwe.
      Liczymy na to, że uda się ustalić nowe cele terapeutyczne w oparciu o profilowanie właśnie tych krążących markerów (krążących we krwi komórek nowotworowych czy krążącego DNA nowotworowego) a nie tylko guza pierwotnego, który jest analizowany w klasycznym postępowanie diagnostycznym – powiedziała dr Markiewicz.
      Jak wyjaśniła, nowotwory charakteryzują się dużą heterogennością - w obrębie guza pierwotnego można znaleźć wiele populacji (klonów) komórek nowotworowych, różniących się między sobą profilem molekularnym i tym samym wrażliwością na terapie.
      Dr Markiewicz mówi, że w badaniach chce iść o krok dalej: nie tylko zbadać molekularną heterogenność guza pierwotnego, ale i komórek nowotworowych z niego uwolnionych, czyli krążących komórek nowotworowych, które mogą stanowić najbardziej agresywną grupę komórek nowotworowych w organizmie. Komórki te izoluje się z próbki krwi pobranej od pacjentki w czasie rutynowych badań. Jak zaznaczyła badaczka, ze względu na małą inwazyjność procedury pobierania krwi, proces ten może być powtarzany, co umożliwia częste monitorowanie zmian profilu molekularnego krążących komórek nowotworowych czy krążącego DNA nowotworowego i tym samym pozwala na bieżąco oceniać efektywność terapii.
      Możliwość szybkiej oceny rozwijającej się oporności byłaby dla lekarzy narzędziem pozwalającym na szybszą interwencję terapeutyczną, zmiany leczenia na inne, możliwie bardziej dopasowane do konkretnego pacjenta w danym momencie – podkreśliła.
      Możliwość wykorzystania krążących komórek nowotworowych czy krążącego DNA nowotworowego do monitorowania odpowiedzi na leczenie jest coraz częściej badana. My jednak włączamy do naszych analiz bardzo szerokie profilowanie różnych typów krążących komórek nowotworowych, które trudno uchwycić klasycznymi metodami detekcji. Dzięki temu liczymy na uzyskanie większej ilości informacji na temat choroby nowotworowej – podsumowała dr Markiewicz.
      Pytana, dlaczego właśnie takimi badaniami się zajęła, mówi, że zafascynowało ją podłoże molekularne i mechanizmy, jakie wykorzystują komórki nowotworowe do tego, żeby rozprzestrzeniać się w organizmie. Mimo że komórki nowotworowe wywodzą się z naszych własnych komórek, potrafią zaskakująco dobrze ukrywać się przed układem odpornościowym, z jednej strony wyłączać, z drugiej wyłączać programy molekularne w celu przeżycia i wzrostu. Wspaniale byłoby poznać, jak można przechytrzyć te komórki w celu ich unicestwienia – powiedziała badaczka.
      Analiz genomicznych na zebranym przez zespół dr Markiewicz materiale dokona zespół z niemieckiego Uniwersytetu w Ratyzbonie (będący pionierem badań na pojedynczych komórkach) pod opieką dr Zbigniewa Czyż i prof. Christopha Kleina.
      Współpraca polskich i niemieckich naukowców będzie możliwa w ramach programu OPUS 20 + LAP, na który zespół dr Markiewicz otrzymał dofinansowanie w wysokości 1 154 743 zł. Naukowcy z Uniwersytetu w Ratyzbonie otrzymali równoległe finansowanie z niemieckiej instytucji finansującej (Deutsche Forschungsgemeinschaft) na ten wspólny projekt pt. „Genomiczne profilowanie krążących markerów i sparowanych guzów pierwotnych od chorych na raka piersi".
      Według prognoz epidemiologicznych nowotwory staną się głównym zabójcą w XXI wieku. Na świecie obserwuje się wzrost zachorowań na raka piersi, dlatego coraz więcej chorych będzie leczonych na raka piersi.
      Wczesne wykrycie nowotworu wiąże się z lepszym rokowaniem, ale dobór właściwej terapii i monitorowanie odpowiedzi czy możliwych nawrotów choroby jest wciąż bardzo istotny dla kontroli choroby nowotworowej – powiedziała badaczka.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni ze Stanford Medicine odkryli gen, który jest odpowiedzialny za większość mechanizmu powodującego pojawianie się pasków, plamek czy łatek zdobiących futro zarówno lamparta jak i domowego Mruczka. Wzorce kolorów to jedna z nierozwiązalnych zagadek biologii. Nie mamy modelowego obiektu do ich badania. U myszy paski czy łaty nie występują, mówi emerytowany profesor genetyki Gregory Barsh.
      Naukowcy, obserwując zróżnicowanie kolorów i wzorów, jakie widzimy u tygrysów, zebr czy gepardów, zadali sobie pytanie o mechanizm genetyczny leżący u ich podstaw. I częściowo udało się na to pytanie odpowiedzieć.
      Barsh i jego zespół zidentyfikowali gen DKK4, który reguluje wczesne etapy rozwoju wzorców kolorystycznych widocznych na futrach domowych. Naukowcy przypuszczają, że ten sam gen jest odpowiedzialny za ubarwienie wszystkich gatunków kotów, a może też i innych ssaków.
      Już wcześniej ten sam zespół zidentyfikował gen odpowiedzialny za zmienność kolorów u kotów pręgowanych. Okazało się, że to ten sam gen, który odpowiada za różnicę wyglądu pomiędzy gepardami a gepardami królewskimi, które mają grubszy, bardziej widoczny wzór na futrze.
      Z badań nad kotami domowymi wiedzieliśmy, że istnieją jeszcze inne geny odpowiedzialne za tworzenie się wzorców, nie wiedzieliśmy tylko, które to, mówi Barsh. Na trop odpowiedzi trafili w kocich tkankach płodowych. Kluczem okazało się pogrubienie skóry kociego płodu w niektórych regionach. Pogrubienie to tworzyło wzorzec, który odpowiadał późniejszemu wyglądowi futra dorosłego kota. W grubszych regionach skóry futro będzie w przyszłości ciemniejsze, w regionach cieńszych – jaśniejsze. Nazwaliśmy ten etap „ustanowieniem wzorca”, dochodzi do niego na długo przed pojawieniem się kolorów na futrze i na długo zanim mieszki włosowe dojrzeją, mówi Barsh.
      Etap „ustanowienia” wskazał naukowcom, które komórki są zaangażowane w tworzenie wzorca na futrze oraz czas, kiedy jest on ustalany. To zaś pozwoliło im na zbadanie genomu komórek zaangażowanych w powstawanie wzorca. Okazało się, że w pogrubionej skórze szczególnie aktywny jest gen DKK4, a w skórze cieńszej jego aktywność pozostaje na normalnym poziomie.
      Żeby jednak dokładniej określić związek pomiędzy DKK4 a wczesnym tworzeniem się wzorca kociej sierści, naukowcy przyjrzeli się kotom abisyńskim. Gatunek ten nie posiada charakterystycznych dla innych kotów pasków czy łatek. Ich futro wybarwione jest różnymi, jakby rozcieńczonymi barwami, z niewielkimi ciemniejszymi obszarami, które wyglądają tak, jakby ktoś za pomocą ołówka lekko przyciemnił wierzch futra.
      Gdy naukowcy zbadali gen DKK4 Abisyńczyków okazało się, że gen ten posiada mutację, w wyniku której gatunkowi temu brak jest wzorów charakteyrystyczych dla innych kotów. Ta mutacja najwyraźniej znacznie upośledza zdolność DKK4 do wytworzenia wzorców. Gdy zaś gen zostanie usunięty, wspomniane ciemniejsze obszary u kotów abisyńskich nie znikają, ale stają się mniejsze i są gęściej upakowane.
      Oczywiście każdy z nas przypomni sobie, że widział całkiem białego lub całkiem czarnego kota. Jednak, wbrew pozorom, koty te również posiadają wzorce. Kolor futra decyduje się w dwóch procesach. Jest to proces ustalania się wzorca wybarwienia oraz proces produkcji pigmentu przez mieszki włosowe. U kotów czarnych wzorca nie widać, gdyż mieszki włosowe produkują wszędzie czarny pigmentu. U kotów białych nie widać go, gdyż włosom brakuje pigmentu.
      Naukowcy nie wiedzą dokładnie, w jaki sposób DKK4 wpływa na tworzenie się wzorca. Wiedzą jednak, że DKK4 wchodzi w interakcje z proteinami z klasy WNT. I to współpraca DKK4 oraz WNT decyduje o wzorcu wybarwienia kociego futra. Dzieje się to już w chwili, gdy embrion ma zaledwie 2-3 milimetry długości. Na całe tygodnie zanim w futrze rozpocznie się produkcja pigmentu. To działanie DKK4 decyduje, gdzie futro będzie ciemniejsze. Zagadką pozostaje, w jaki sposób te obszary skóry „zapamiętują”, że wytworzone tam mieszki włosowe mają wyprodukować ciemniejszy pigment. To nierozwiązana przez nas kwestia. Nie potrafimy połączyć procesu „ustanawiania wzorca” z późniejszym procesem jego tworzenia się. Wciąż próbujemy to określić, przyznaje Barsh.
      Uczony zauważa, że DKK4 to nie wszystko. Zaangażowane są też inne geny, które decydują – na przykład – dlaczego niektóre koty mają paski, a inne plamki, mówi uczony i zapowiada, że i na te pytania będzie szukał odpowiedzi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W naszych organizmach bez przerwy znajdują się tysiące komórek, w których DNA pojawiły się błędy mogące powodować nowotwory. Jednak tylko w rzadkich przypadkach rzeczywiście dochodzi do rozwoju choroby. Standardowe wyjaśnienie tego fenomenu jest takie, że potrzebna jest odpowiednia liczba konkretnych mutacji, by pojawił się nowotwór. Nauka zna jednak liczne przypadki, gdy ten sam zestaw mutacji raz powoduje nowotwór, a raz nie.
      Dobrym przykładem takiego zjawiska są pieprzyki na skórze. Komórki, z których one powstają, nie są normalne pod względem genetycznym. Często zawierają one zmutowany gen BRAF, który – gdy znajdzie się w komórkach poza pieprzykiem – często powoduje czerniaka. Jednak zdecydowana większość pieprzyków u zdecydowanej większości ludzi nigdy nie zamienia się w guzy nowotworowe.
      Na łamach Science opublikowano właśnie artykuł, z którego dowiadujemy się, że powstanie czerniaka zależy od czegoś, co autorzy badań nazwali „kompetencją onkogeniczną”. Jest ona wynikiem współpracy pomiędzy mutacjami DNA w komórce a konkretnym zestawem genów, które są w niej aktywowane. Jak się okazało, komórki posiadające kompetencję onkogeniczną do utworzenia czerniaka mają dostęp do zestawu genów, które normalnie są nieaktywne w dojrzałych melanocytach. Odkrycie to wyjaśnia, dlaczego jedne komórki tworzą guzy nowotworowe, a inne nie. Pewnego dnia odkrycie to może zostać wykorzystane do walki z nowotworami.
      Dotychczas sądzono, że do rozwoju nowotworu konieczne jest pojawienie się dwóch mutacji DNA: aktywny onkogen i nieaktywny antyonkogen. Teraz naukowcy ze Memorial Sloan Kettering Cancer Center (MSK) odkryli trzeci element. Zauważyli bowiem, że do pojawienia się czerniaka potrzebny jest dostęp do genów, które są zwykle wyłączone w dojrzałych melanocytach. Aby ten dostęp mieć, komórki potrzebują specyficznych protein. Bez nich guz się nie utworzy, nawet jeśli występują powiązane z nowotworem mutacje DNA.
      Przed ponad 10 laty profesor Richard White badał rozwój czerniaka u danio pręgowanego. To złośliwy nowotwór skóry i błon śluzowych wywodzący się z komórek pigmentowych, melanocytów. Przeprowadzone wówczas analizy wykazały, że w guzach aktywne są liczne geny charakterystyczne bardziej dla komórek embrionalnych, a nie dojrzałych melanocytów. Zaczęliśmy się więc zastanawiać, dlaczego geny te zostały włączone. Czy są one ważne dla rozwoju guza, a jeśli tak, to w jaki sposób, mówi White.
      Naukowcy wzięli na warsztat gen BRAF, którego zmutowana forma jest obecna w połowie przypadków czerniaka. Gen ten aktywowano w komórkach danio na trzech różnych etapach ich rozwoju. Na etapie grzebienia nerwowego (NC), z którego rozwija się wiele różnych komórek, w tym melanocyty; na etapie melanoblastu (MB), czyli komórki prekursorowej melanocytu, oraz na etapie dojrzałego melanocytu (MC). Okazało się, że do rozwoju guzów doszło tylko u tych ryb, u których zmutowana forma BRAF została aktywowana na etapie NC i MB.
      Następnie uczeni wprowadzili zmutowany BRAF do ludzkich macierzystych komórek pluripotencjalnych znajdujących się na tych samych trzech stadiach rozwoju, co komórki badane u ryb, i wszczepili je myszom. I znowu okazało się, że tylko w przypadku komórek w dwóch stadiach rozwoju, NC i MB, pojawiły się guzy nowotworowe.
      Badacze zaczęli więc poszukiwać różnic molekularnych pomiędzy komórkami. Zauważyli, że różnica dotyczy genu ATAD2, który kontroluje dynamikę chromatyny, substancji występującej w jądrze komórkowym. Gen ten był aktywny w komórkach NC i MB, ale nie MC. Gdy naukowcy usunęli ATAD2 z podatnych na czerniaka danio pręgowanych, guzy nie powstały. Gdy zaś wprowadzili aktywny ATAD2 do dojrzałych melanocytów (MC), komórki zyskały zdolność tworzenia guza.
      Autorzy badań przeanalizowali następnie dane kliniczne zarówno pacjentów Memorial Sloan Kettering Cancer Center jak i dane dostępne w Cancer Genome Atlas. Zauważyli, że ATAD2 jest ważnym czynnikiem rozwoju czerniaka. Okazało się bowiem, że pacjenci, u których gen ten był bardziej aktywny, mieli mniejsze szanse przeżycia. Wydaje się więc, że jest on istotny dla rozwoju nowotworu. Mutacje DNA są jak zapalniczka. Jeśli masz nieodpowiednie drewno lub jest ono mokre, może powstać iskra, ale nie będzie ognia. Jeśli jednak drewno jest odpowiednie, wszystko zaczyna się palić", mówi doktor Arianna Baggiolini.
      Technika pracy z pluripotencjalnymi komórkami macierzystymi, która została opracowana na potrzeby badań nad czerniakiem, może zostać wykorzystana podczas spersonalizowanego leczenia nowotworu. Richard White i Lorenz Studer z MSK uzyskują z krwi pacjentów pluripotencjalne komórki macierzyste. Następnie są w stanie wprowadzać do tych komórek specyficzne mutacje, charakterystyczne dla guza nowotworowego każdego pacjenta. W ten sposób tworzony jest indywidualny model choroby, na którym można testować wiele różnych leków, by sprawdzić, które dadzą najlepsze efekty u danej osoby.
      Wykorzystując pluripotencjalne komórki macierzyste możemy próbować stworzyć indywidualne modele choroby dla każdego pacjenta i każdego rodzaju tkanki. Mam nadzieję, że z czasem stanie się to standardową metodą leczenia nowotworów, mówi Studer.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie nowotwory należą do jednej z dwóch kategorii, informują badacze z Sinai Health. Odkrycie to może pozwolić na opracowanie nowych strategii walki z najbardziej agresywnymi i niepoddającymi się leczeniu chorobami nowotworowymi.
      Olbrzymie zróżnicowanie nowotworów powoduje, że bardzo trudno znaleźć jest skuteczne formy leczenia tych chorób. Naukowcy z Lunenfeld-Tanenbaum Research Institute (LTRI), będącego częścią Sinai Health, donoszą na łamach Cancer Cell, że nowotwory można podzielić na zaledwie dwie kategorie, w zależności od ekspresji bądź braku ekspresji białka YAP (Yes-associated protein).
      Przeprowadzone przez nich badania wykazały bowiem, że we wszystkich nowotworach mamy do czynienia albo z ekspresją, albo wyciszeniem białka YAP. W zależności, do której z tych grup należy dany nowotwór, różnie reaguje on na leczenie.
      Białka YAP są niezwykle ważnym elementem szlaku sygnałowego Hippo. Szlak ten odgrywa istotną rolę w kontroli wzrostu narządów u zwierząt, regulując procesy proliferacji i apoptozy komórek.
      YAP nie tylko jest włączone bądź wyłączone, ale ma też przeciwne pro- lub antynowotworowe działanie, zależnie od kontekstu. Nowotwory z YAPon potrzebują YAP by się rozwijać i przetrwać, z kolei nowotwory YAPoff przestają się rozwijać po aktywacji YAP, mówi Rod Bremner.
      Naukowcy przypominają, że wiele nowotworów YAPoff to choroby wysoce śmiertelne. Naukowcy wykazali też, że niektóre nowotwory, jak nowotwór prostaty czy płuc, potrafią przełączyć się pomiędzy stanem YAPon a YAPoff by zyskać oporność na leczenie.
      Komórki nowotworowe, hodowane w szalkach laboratoryjnych, albo unoszą się w płynie, albo przyczepiają się do szalki. Uczeni z Sinai Health odkryli, że to YAP decyduje o pływalności komórek. Wszystkie komórki nowotworowe YAPoff unoszą się, a wszystkie YAPon przyczepiają się. Nie od dzisiaj zaś wiemy, że zdolność komórek do adhezji decyduje o ich oporności na leczenie.
      Odkryta przez nas prosta dwuwartościowa klasyfikacja nowotworów może pomóc w opracowaniu terapii, które są skuteczne dla wszystkich chorób należących do klas YAPoff i YAPon, stwierdził współautor badań Joel Pearson Uczony zauważył też, że skoro nowotwory mogą przełączać się pomiędzy tymi stanami, by uniknąć leczenia, opracowanie metod kontrolowania stanu YAPoff i YAPon spowoduje, że będziemy mogli powstrzymać nowotwór przed przełączeniem się w stan, w którym może zyskać oporność na leczenia.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...