Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Plazmowy płaszcz wokół Ziemi

Rekomendowane odpowiedzi

Dzięki szczegółowej analizie danych z pięciu satelitów badających atmosferę, naukowcy z Vanderbilt University odkryli nowy region w magnetosferze. Okazało się, że Ziemię otacza płaszcz gorącej plazmy.

Naukowcy pod przewodnictwem dyrektora Dyer Observatory, profesora fizyki Charlesa Chappella, badali przekrój magnetosfery i natrafili na plazmowy płaszcz. Nie otula on całej planety. Bierze początek po nocnej stronie globu i rozciąga się do strony dziennej, gdzie stopniowo zanika. Otacza około 3/4 Ziemi. Plazma tworzona jest przez niskoenergetyczne cząstki, unoszące się w kierunku przestrzeni kosmicznej z biegunów Ziemi. Cząstki te są następnie zawracane i przyspieszane przez pole magnetyczne w kierunku planety i rozprzestrzeniają się tworząc plazmowy płaszcz.

Nowo odkrytego obszaru magnetosfery nie należy mylić ze znaną od niemal 50 lat plazmosferą. Nowy obszar rozciąga się powyżej plazmosfery i, w przeciwieństwie do niej, tworzy go gorąca, czyli posiadająca wysoki ładunek elektryczny, plazma. Energia cząstek w plazmosferze wynosi mniej niż 3 elektronowolty. Tymczasem w nowoodkrytym płaszczu waha się ona pomiędzy 10 a 3000 eV.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
początek po nocnej stronie globu i rozciąga się do strony dziennej, gdzie stopniowo zanika. Otacza około 3/4 Ziemi.

 

Nowy obszar rozciąga się powyżej plazmosfery i, w przeciwieństwie do niej, tworzy go gorąca, czyli posiadająca wysoki ładunek elektryczny, plazma. Energia cząstek w plazmosferze wynosi mniej niż 3 elektronowolty. Tymczasem w nowoodkrytym płaszczu waha się ona pomiędzy 10 a 3000 eV

 

Informacja dnia , ziemie otacza lustro odbijające fale EM, przerwane w miejscu gdzie stoi słońce, ale tam pojawia się troposfera 12km od ziemi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Prosiłbym o poprawienie tego akapitu:

(...) tworzy go gorąca, czyli posiadająca wysoki ładunek elektryczny, plazma. Energia cząstek w plazmosferze wynosi mniej niż 3 elektronowolty. Tymczasem w nowoodkrytym płaszczu waha się ona pomiędzy 10 a 3000 eV.

Temperatura to nic innego jak miara średniej energii kinetycznej. Temperatura plazmy nie ma nic wspólnego z ładunkiem elektrycznym, ponieważ elektronowolt (zresztą wynika to z dalszego tekstu) to jednostka energii, równa około 1.6*10-19J.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Temperatura plazmy nie ma nic wspólnego z ładunkiem elektrycznym

 

energia to ruch. im szybciej się poruszasz tym większą masz energię. im większą masz energie tym większą masz temperaturę. energia, ruch, ciepło to jest jedno i to samo. ; )

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

energia to ruch. im szybciej się poruszasz tym większą masz energię. im większą masz energie tym większą masz temperaturę. energia, ruch, ciepło to jest jedno i to samo. ; )

O ile wiem, to sam ruch nie powoduje wzrostu temperatury, co jedynie tarcie. A potencjał jakoś specjalnie nie jest połączony z temperaturą. Innymi słowy, są to różne postacie tego samego energii - ale to nie oznacza, że od siebie zależą.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
energia to ruch. im szybciej się poruszasz tym większą masz energię. im większą masz energie tym większą masz temperaturę. energia, ruch, ciepło to jest jedno i to samo. ; )

Dokładnie, i dlatego sformułowanie

gorąca, czyli posiadająca wysoki ładunek elektryczny, plazma

jest złe. Ze spójnikiem "czyli" brzmi to tak, jakby z faktu że plazma jest gorąca wynikało że posiada ładunek elektryczny, tymczasem tak nie jest. Np gdy plazma powstaje w łuku elektrycznym (gdzie jest gorąco), to jej ładunek elektryczny jest równy 0 - bo to po prostu zjonizowane gazy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

fakt

autor pomylił eV z ładunkiem elektrycznym,

natomiast eV (elektronoVolt) jest jednostką w której najczęściej podaje się energię kinetyczną cząstek naładowanych

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Plazma posiada ładunek (i to wysoki), bo inaczej jest strumieniem dobrze rozdrobnionej materii a nie plazmą (bez ładunku by sie nie poruszała w polu elektrycznym).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy ze SLAC National Accelerator Laboratory wykorzystali najpotężniejszy na świecie laser działający w zakresie promieniowania rentgenowskiego stworzenia i zbadania próbki materii o temperaturze 2 milionów stopni Celsjusza. Eksperymenty tego typu pozwalają na zbadanie materii występującej wewnątrz gwiazd i olbrzymich planet. Mogą tez przydać się podczas badań nad procesem fuzji jądrowej.
      Laser Linac Coherent Light Source (LCLS) generuje impulsy promieni X, które są miliard razy jaśniejsze niż promieniowanie z jakiegokolwiek innego znanego nam źródła. Za pomocą takich impulsów rozgrzano kawałek folii aluminiowej, tworząc gorącą gęstą materię o temperaturze około 2 milionów stopni Celsjusza. Cały proces tworzenie plazmy trwał biliardowe części sekundy.
      Naukowcy od dawna potrafili uzyskiwać plazmę z gazów i badać ją za pomocą laserów. Dotychczas jednak nie istniało urządzenie, które byłoby w stanie tworzyć plazmę z ciała stałego. LCLS, dzięki wykorzystaniu ultrakrótkich fali X jest pierwszym, który potrafi penetrować gęste ciała stałe, tworzyć plazmę i jednocześnie ją badać - powiedział Bob Nagler, współautor badań.
    • przez KopalniaWiedzy.pl
      Symulacje przeprowadzone przez NASA dowodzą, że burze słoneczne i związane z nimi koronalne wyrzuty masy (CME) mogą w znacznym stopniu wpływać na erozję powierzchni Księżyca. Takie zjawiska nie tylko są w stanie usuwać zadziwiająco dużo materiału z powierzchni ziemskiego satelity, ale również mogą być główną przyczyną, dla której planety takie jak Mars, niechronione przez globalne pole magnetyczne, nie posiadają atmosfery. Mogła ona zostać zniszczona przez Słońce.
      Podczas koronalnych wyrzutów masy od powierzchni gwiazdy odrywają się miliardy ton plazmy poruszającej się z prędkością sięgającą milionów kilometrów na godzinę. Takie obłoki plazmy mogą być wielokrotnie większe od Ziemi.
      Gdy obłok trafi w Księżyc, dochodzi do zjawiska zwanego rozpraszaniem, podczas którego wskutek oddziaływania wysokoenergetycznych cząsteczek atomy są odrywane z ciał stałych.
      Odkryliśmy, że gdy masywna chmura plazmy uderza w powierzchnię Księżyca, działa jak maszyna do piaskowania i z łatwością usuwa materiał z powierzchni. Nasz model przewiduje, że podczas typowego dwudniowego przejścia CME z Księżyca może zostać usunięte 100-200 ton materiału - mówi William Farrel z NASA.
      Farrel i jego koledzy przeprowadzili pierwsze w historii badania dotyczące wpływu CME na powierzchnię satelity Ziemi. To część kierowanego przez Farrela programu DREAM (Dynamic Response of the Environment at the Moon), który ma dokładnie zbadać warunki panujące na Księżycu i przygotować ludzi na przyszłą eksplorację Srebrnego Globu.
      Zdaniem naukowców CME efektywnie usuwają księżycową materię gdyż są gęstsze od wiatru słonecznego i zawierają dużo wysokoenergetycznych ciężkich jonów. Wiatr słoneczny składa się w dużej mierze z jonów wodoru, a jony helu - niosące większy ładunek elektryczny i przez to zdolne do usuwania z powierzchni dziesiątek razy więcej atomów - stanowią zaledwie około 4% wiatru. Tymczasem w CME jony helu mogą stanowić ponad 20% składu. W połączeniu z dużą prędkością i gęstością ciężkie jony z CME mogą usuwać nawet 50-krotnie więcej materiału niż protony z wiatru słonecznego.
    • przez KopalniaWiedzy.pl
      Badacze z Uniwersytetu Kalifornijskiego w Berkeley wykorzystali plazmę do uzyskania wody, która przez tydzień wykazuje właściwości antybakteryjne. Można nią sterylizować sprzęt medyczny, np. narzędzia chirurgiczne, oraz rany (Journal of Physics D: Applied Physics).
      Podczas eksperymentów Amerykanie stworzyli w powietrzu plazmę i przez 20 minut oddziaływali nią na wodę destylowaną. Ciecz odstawiano na różne okresy (maksymalnie do tygodnia), a później umieszczano w niej pałeczki okrężnicy (Escherichia coli). Bakterie pozostawiano tam na 15 minut lub 3 godziny. Następnie wyszukiwano wszystkie żywe mikroorganizmy i porównywano z liczbą pałeczek w wodzie, która nie była aktywowana plazmą. Okazało się, że woda pozyskana przed tygodniem po 3-godzinnej ekspozycji doskonale eliminowała patogeny.
      Naukowcy widzą wiele zastosowań dla przenośnego urządzenia, które zdążyli już wypróbować w laboratorium. Wspominają m.in. o krajach Trzeciego Świata czy sytuacjach kryzysowych po katastrofach naturalnych.
      Różne grupy badawcze wykazywały wcześniej, że plazma stworzona w pobliżu wody zmienia ją w kwasowy roztwór, zawierający wiele związków bakteriobójczych. Wyniki zainteresowały Kalifornijczyków, którzy postanowili bliżej przyjrzeć się tej kwestii. Wiemy, że po skierowaniu plazmy do wody powstają takie produkty jak nadtlenek wodoru, azotany oraz azotyny i że są one antybakteryjne, zwłaszcza w środowisku kwasowym powstałym pod wpływem plazmy. Stwierdziliśmy jednak, że wymienione związki nie pozwalają w pełni wyjaśnić zaobserwowanego efektu antybakteryjnego, dlatego przyszłe badania muszą się koncentrować na zidentyfikowaniu wszystkich odpowiedzialnych za to produktów - podkreśla prof. David Graves.
    • przez KopalniaWiedzy.pl
      Pokrycie implantów stawów kolanowych rodnikami sprawia, że są one przez organizm postrzegane jako ciała w mniejszym stopniu obce. Zmniejsza to ryzyko odrzucenia protez przez organizm.
      Prof. Marcela Bilek z Uniwersytetu w Sydney sądzi, że wolne rodniki tworzą wokół powierzchni implantu coś w rodzaju czapki niewidki.
      Australijczycy wyjaśniają, że implanty stawów kolanowych czy biodrowych, stenty itp. z definicji wymagają kontaktu struktur biologicznych z metalem czy plastikiem. Kiedy jednak białka stykają się ze sztucznymi powierzchniami, ulegają denaturacji i zatracają swoją konformację przestrzenną, która jest im niezbędna do prawidłowego funkcjonowania. Organizm próbuje je naprawiać, a gdy się to nie udaje, wskutek nadmiernego włóknienia implant zostaje otoczony grubą warstwą tkanki bliznowatej.
      Naukowcy z antypodów wyszli z założenia, że potrzebne są silnie wiążące (się) powierzchnie, które nie wywołują denaturacji kompatybilnego białka. Tradycyjne powierzchnie hydrofilne spełniają jeden z tych warunków - nie prowadzą do denaturacji unieruchomionych protein - ale niestety, wykazują do nich niskie powinowactwo. Po przejrzeniu literatury przedmiotu i wygenerowaniu własnych hipotez zespół Bilek przetestował więc metodę wykorzystującą naczynie z plazmą i strumienie jonów. Dzięki niej uzyskano powierzchnię hydrofilną, zdolną do wiązania kowalencyjnego z czynnymi biologicznie cząsteczkami. Podczas eksperymentów okazało się bowiem, że siły elektrostatyczne powodują, iż jony w plazmie uderzają w powierzchnię materiału, np. metalu, i zaczynają go penetrować, prowadząc do powstania rodników z niesparowanymi elektronami. Po wyjęciu powierzchni z plazmy rodniki migrują na powierzchnię, gdzie reagują z tlenem z powietrza. Wskutek tego materiał staje się hydrofilny i przyciąga białka, które są normalnie złożone w taki sposób, że część wykazująca powinowactwo do wody znajduje się na zewnątrz. Z czasem coraz więcej rodników migruje na powierzchnię, dzięki czemu między nimi a białkami mogą powstać wiązania kowalencyjne.
      Australijczycy udowodnili, że czas utworzenia monowarstwy kowalencyjnie związanych białek zależy od kinetyki, a także liczby cząsteczek protein w roztworze oraz wolnych rodników w rezerwuarze pod powierzchnią badanego materiału. Jako że magazyn rodników można wytworzyć w każdym ciele stałym, metoda zespołu Bilek sprawdzi się w odniesieniu do różnego rodzaju urządzeń biomedycznych, od stentów po płucoserca. Warto też wspomnieć o ich potencjale w zakresie wykrywania patogenów. W tego rodzaju czujnikach rodniki zapobiegałyby odkształceniu białek stosowanych do detekcji szkodliwych bakterii czy wirusów. Powłoka zostanie też zapewne wdrożona w mikromacierzach ułatwiających leczenie wczesnych etapów chorób.
      Bilek tłumaczy, że jako część powłoki wolne rodniki pozostają związane i nie mogą poczynić szkód w DNA komórek. Obecnie trwają prace nad białkami do tworzonych powłok, które "zachęcałyby" tkanki do integrowania ze sztucznymi powierzchniami.
    • przez KopalniaWiedzy.pl
      W RPA odkryto najstarsze dowody istnienia pola magnetycznego Ziemi, tym samym początki jego istnienia cofnięto w czasie o 250 mln lat. W skałach dacytowych z gór otaczających miejscowość Barberton znaleziono bowiem charakterystycznie ułożone niewielkie minerały żelaza.
      Ich analiza wykazała, że 3,45 mld lat temu siła pola magnetycznego naszej planety była o wiele mniejsza niż obecnie. Profesor John Tarduno z University of Rochester opowiadał kolegom po fachu o swoich odkryciach na konferencji nt. nauk o Ziemi w Wiedniu. Wg niego, ok. 3,45 mld lat temu miał miejsce krytyczny okres, ponieważ to również wtedy pojawiły się pierwsze formy życia. Być może te dwa zjawiska są ze sobą powiązane.
      Amerykanie opracowali metodę badania magnetytów (drobinek minerału zaliczanego do grupy spineli żelazowych), które zostały uwięzione w kryształach skały wulkanicznej. W stygnącej lawie minerały żelaza orientują się w stosunku do pola magnetycznego. Ich pozycja ulega utrwaleniu, kiedy temperatura krzepnących skał spada poniżej 580 stopni Celsjusza.
      Tarduno uważa, że choć dzisiaj granica między magnetosferą a wiatrami słonecznymi znajduje się w odległości 10 promieni od centrum Ziemi, kiedyś mogła być zlokalizowana znacznie bliżej, bo w odległości 3-5 promieni. Oznaczałoby to, że w zamierzchłej przeszłości zorze występowały na mniejszych szerokościach geograficznych, gdyż więcej naładowanych cząstek słonecznych (protonów i elektronów) pokonywało pole magnetyczne naszej planety i zderzało się z cząstkami występującymi w atmosferze. Profesor zakłada także, że z atmosfery w szybszym - niż wcześniej zakładano - tempie zniknęła większa ilość lekkich pierwiastków, np. wodoru. Zespół dywaguje, że może to oznaczać, że na wczesnej Ziemi było w takim razie o wiele więcej wody.
      W Afryce, Indiach i Australii występują bardzo stare skały wulkaniczne. Ich wiek ocenia się na 3,6 mld lat. Tarduno nimi nie dysponuje, ale pozyskał młodsze skały osadowe, które zawierają minerały erodujące ze starożytnych skał, liczących sobie nawet 4 mld lat. Opracowujemy technologie i wierzymy, że potrafimy naprawdę odtworzyć utrwalone w nich pole magnetyczne.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...