Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Czy pierwsze związki organiczne na Ziemi zostały przywleczone przez meteoryty? Być może. Istnieje jednak prawdopodobieństwo, że do ich syntezy doszło dopiero na powierzchni naszej planety, lecz udział "spadających gwiazd" w tym procesie był niebagatelny.

W dzisiejszych czasach upadek dużego ciała niebieskiego mógłby spowodować prawdziwą katastrofę. Zdaniem naukowca z japońskiego Uniwersytetu Tohoku w przeszłości mogło być jednak zupełnie inaczej - to meteoryty mogły posłużyć jako źródło prekursorów znanych obecnie związków organicznych oraz energii niezbędnej do zajścia odpowiednich reakcji chemicznych.

Aby potwierdzić tę odważną hipotezę, doktorant Yoshihiro Furukawa użył bardzo silnego działa, które miało symulować uderzenie meteorytu w powierzchnię Ziemi. Wystrzeliwane pociski uderzały w mieszaninę oczyszczonego węgla, żelaza, niklu, wody oraz azotu - najważniejszych składników tzw. chondrytów, czyli jednego z rodzajów meteorytów kamiennych. Po uderzeniu analizowano, z wykorzystaniem najnowocześniejszych technik analitycznych, skład chemiczny materii powstającej w miejscu kolizji.

Eksperyment badacza z Uniwersytetu Tohoku pokazał, że w wyniku uderzenia powstawał cały szereg związków organicznych, takich jak kwasy tłuszczowe, aminy, a nawet jeden z aminokwasów. Przedstawiciele każdej z tych trzech grup są niezwykle istotnymi składnikami funkcjonujących na Ziemi organizmów.

Biorąc pod uwagę fakt, że w warunkach laboratoryjnych odtworzono tylko pewien uproszczony model kolizji chondrytu z Ziemią, można przypuszczać, że w rzeczywistości spektrum powstających związków organicznych jest znacznie szersze. Warto też zwrócić uwagę na fakt, iż w czasach, gdy na Błękitnej Planecie powstawały pierwsze organizmy, uderzało w nią 1000 razy więcej meteorytów niż obecnie. Niezależnie od tych spekulacji, jedno jest zdaniem Furukawy pewne: to badanie jest pierwszym, które pokazało, że aminokwas może zostać zsyntetyzowany w drodze naturalnego mechanizmu, który mógł wystąpić na młodej Ziemi.

Wcześniejsze eksperymenty wykazały, że podczas zderzenia "spadającej gwiazdy" z powierzchnią naszej planety powstają lepkie cząstki, z których może powstać następnie glina. Wygląda więc na to, że kilka miliardów lat temu mogły one wiązać ze sobą związki organiczne, a następnie opadać na dno oceanów, tworząc w ten sposób wspaniałe warunki do powstania pierwszych form życia. 

Do rozwiązania pozostaje teraz jedna zagadka: jeśli elementy potrzebne do powstania życia przybyły do nas z kosmosu, to czy z pomocą narzędzi ze zgubionego przez amerykańską astronautkę przybornika  także uda się zmontować jakiś organizm? ;-) 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

...także uda się zmontować jakiś organizm? ;-)

 

ostatnio pisali, że ludzie potrafią już stworzyć sztuczne dna (--> życie), ale człowiek stanie się bogiem dopiero wtedy, gdy odkryje wszystkie prawa natury i stworzy atom (-->wszechświat)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

...I gdy odkryje wszystko to i tak będzie to tylko wiedza, która dla Boga może być niczym:)

 

nasze ludzkie prymitywne spojrzenie:)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Antarktyka to jedno z najlepszych na świecie miejsc do poszukiwań meteorytów. Jej suchy, pustynny klimat, powoduje, że fragmenty skał, które przed tysiącami lat spadły na Ziemię, w niewielkim stopniu ulegają wietrzeniu. Nie mówiąc już o tym, że ciemne meteoryty są dobrze widoczne na śnieżnobiałym tle. Nawet meteoryty, które zatonęły w lodzie, zostają z czasem wypchnięte w pobliżu powierzchni.
      Grupa naukowców, pracujących pod kierunkiem Marii Valdes z Field Museum i University of Chicago znalazła właśnie 5 meteorytów, w tym jeden z największych w Antarktyce – okaz o wadze 7,6 kilograma. Valdes mówi, że wśród około 45 000 meteorytów znalezionych na Antarktyce jedynie około 100 było podobnych rozmiarów lub większych. Rozmiar niekoniecznie ma znaczenie w przypadku meteorytów, czasem małe mikrometeoryty mogą mieć olbrzymią naukową wartość. Ale, oczywiście, znalezienie dużego meteorytu to rzadkość i ekscytujące wydarzenie, stwierdza uczona.
      W ubiegłym roku grupa naukowa prowadzona przez glacjolog Veronikę Tellenaar stworzyła mapę najbardziej obiecujących miejsc poszukiwań meteorytów w Antarktyce. Uczeni wzięli pod uwagę dane satelitarne, informacje o wcześniejszych znaleziskach, dane o temperaturze powierzchni i prędkości ruchu lodu. Na tej podstawie algorytm ocenił szanse na występowanie meteorytów w konkretnych lokalizacjach. Zespół Valdes jest pierwszym, który wybrał się na poszukiwania wykorzystując tę mapę. Uczeni wybrali pięć potencjalnych miejsc. Po 10 dnia poszukiwań, w jednym z nich znaleźli 5 meteorytów.
      Znaleziska trafią do Królewskiego Belgijskiego Instytutu Nauk Naturalnych, gdzie będą badane. Natomiast Valdes i każdy z naukowców biorących udział w wyprawie otrzymał próbki lodu z miejsc znalezienia meteorytów. W swoich rodzimych instytucjach będą poszukiwali w nich mikrometeorytów.
      Specjaliści szacują, że na Antarktyce znajduje się jeszcze 300 000 meteorytów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      To pierwszy przypadek, gdy w Polsce udało się znaleźć meteoryt na podstawie materiałów wideo zarejestrowanych przez kamery sieci bolidowych. Mamy ogromną satysfakcję, że nasze doświadczenie i aparatura pomiarowa pomogły w potwierdzeniu jego kosmicznego pochodzenia oraz przypisaniu go do konkretnego zjawiska bolidowego, mówi Zbigniew Tymiński z Ośrodka Radioizotopów POLATOM w Narodowym Centrum Badań Jądrowych (NCBJ), jeden z koordynatorów Polskiej Sieci Bolidowej.
      Meteoroid został zarejestrowany 15 lipca ubiegłego roku przez 3 kamery Czeskiej Sieci Bolidowej. Był on na tyle jasny, że widać go było mimo bliskiego już wschodu Słońca. Czesi, na podstawie trajektorii, określili prawdopodobne miejsce upadku obiektu. Po tym, jak opublikowali swoje dane, Polska Sieć Bolidowa i związani z nią poszukiwacze udali się się w teren. Już dwa tygodnie później na polnej drodze w pobliżu Antonina w województwie wielkopolskim znaleziono kamień ważący 350 gramów, który pokryty był skorupą obtopieniową. Specjalistyczne badania izotopowe, potwierdzające, że mamy do czynienia z przybyszem z kosmosu, przeprowadzili naukowcy z NCBJ.
      Z obliczeń wykonanych przez Czechów wynika, że obiekt poruszał się po nietypowej orbicie eliptycznej między Wenus a Marsem. W atmosferę Ziemi wszedł nad Polską, w odległości ok. 130 km od granicy z Czechami. Kamery zarejestrowały go, gdy znajdował się na wysokości 74 kilometrów. Pędził wówczas z prędkością 18 km/s, kompresując przed sobą powietrze tak, że rozgrzało się do temperatury kilku tysięcy stopni. Na wysokości około 40 km doszło do rozpadu meteoroidu. Pozostawił on na niebie ślad o długości 62 km, który urywał się, gdy meteoroid wyhamował do 13 km/s. Jak wyjaśnia Tymiński, w późniejszej fazie na upadek obiektu mają wpływ wiatry, których oddziaływania nie jesteśmy w stanie precyzyjnie przewidzieć, przez co można podać tylko przybliżone miejsce lądowania.
      Tymczasem czas od upadku do odnalezienia odgrywa kluczową rolę. W czasie podróży w przestrzeni kosmicznej meteoroid jest bombardowany przez promieniowanie kosmiczne, które prowadzi do produkcji niestabilnych krótko istniejących izotopów promieniotwórczych. Po upadku na Ziemię izotopy te zaczynają szybko zanikać, a ich obecność to mocny dowód, że badany obiekt przebywał poza atmosferą. W przypadku meteorytu z Antonina mieliśmy dużo szczęścia: kompletny okaz mogliśmy umieścić na naszym wysokorozdzielczym detektorze promieniowania gamma po zaledwie trzech tygodniach od lądowania. Wykryliśmy w nim dwanaście radioizotopów pochodzenia kosmicznego, o czasach połowicznego rozpadu od setek tysięcy lat do kilkunastu dni, mówi doktor Agnieszka Burakowska z NCBJ.
      Naukowców szczególnie cieszy zarejestrowanie wanadu-48, którego czas połowicznego rozpadu wynosi 16 dni, oraz chrom-51 o 28-dniowym czasie połowicznego rozpadu. Ponadto, dzięki zbadaniu proporcji kobaltu-60 do aluminium-26 określono masę meteoroidu przed wejściem w atmosferę. Naukowcy wyliczyli, że obiekt ważył kilkadziesiąt kilogramów i jeśli założyć, że miał typową gęstość i kształt kulisty, to jego średnica wynosiła 20-25 centymetrów.
      Meteoryt z Antonina to pospolity chondryt zwyczajny. Mimo tego, jest niezwyczajny. Dotychczas bowiem na całym świecie dzięki stacjom bolidowym wyznaczono orbity jedynie 46 meteorytów, z których niewiele udało się przebadać pod kątem obecności krótko istniejących radionuklidów kosmogenicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Około 1650 r. p.n.e. na południu Doliny Jordanu istniało wielkie miasto. Był to największy ośrodek południowego Lewantu. Miasto było 10-krotnie większe od Jerozolimy i 5-krotnie większe od Jerycha. To było niezwykle ważne miejsce. Znaczna część obrazu kulturowego tego obszaru kształtowała się właśnie tutaj, mówi emerytowany profesor James Kennett. Niedługo potem historia miasta gwałtownie dobiegła końca.
      Pracujący na stanowisku Tall el-Hammam archeolodzy znaleźli tam warstwy, świadczące o istnieniu osadnictwa przez tysiące lat. Miejscowość była budowana, niszczona i odbudowywana przez liczne wieki. Jednak nagle, w środkowej epoce brązu pojawia się 1,5-metrowa warstwa, która przyciągnęła uwagę specjalistów, gdyż zawiera niezwykły materiał. Wśród szczątków, które mogłyby świadczyć potężnych zniszczeniach spowodowanych trzęsieniem ziemi lub wojną, znajdują się fragmenty ceramiki, której powierzchnia zamieniła się w szkło, „ugotowane” cegły i częściowo stopione materiały budowlane. Wszystko to świadczy o działaniu wysokich temperatur, znacznie wyższych, niż można było uzyskać za pomocą ówczesnej technologii. Zdaniem Kennetta, emerytowanego profesora nauk o Ziemi Uniwersytetu Kalifornijskiego w Santa Barbara, temperatura musiała przekraczać 2000 stopni Celsjusza.
      Profesor Kennett wraz z grupą naukowców z innych amerykańskich uniwersytetów i instytucji badawczych, opublikowali na łamach Nature: Scientific Reports artykuł, w którym przedstawiają dowody, że Tall el-Hammam zostało zniszczone przez eksplozję meteorytu na miarę meteorytu tunguskiego. Jeśli mają rację, to mielibyśmy do czynienia z pierwszym znanym nam miastem zniszczonym przez meteoryt i – jak od kilku lat proponują niektórzy badacze – z biblijną Sodomą.
      Niezwykła bogata w węgiel warstwa zniszczenia sprzed 3600 lat w Tall el-Hammam wyznacza moment nagłego opuszczenia centrum miejskiego na południu Doliny Jordanu. W szerokim na 30 kilometrów obszarze Doliny opuszczono jednocześnie 15 innych miast i ponad 100 wiosek. Obszar ten pozostał niezamieszkany przez 300-600 lat, czytamy w podsumowaniu badań.
      Naukowcy piszą o całkowicie zniszczonym mieście, a rozkład znalezionych kości wskazuje na ekstremalne rozczłonkowanie ciał mieszkających tu ludzi. Analizy wykazały obecność sferuli bogatych w żelazo i krzem oraz stopionych metali. Myślę, że jednym z ważniejszych odkryć jest zdeformowany kwarc, który został poddany wysokiemu ciśnieniu, dodaje Kennett.
      O tym, że nad Tall el-Hammam wybuchł meteoryt ma też świadczyć wysoka koncentracja soli w badanej warstwie. Jej średnie stężenie wynosi aż 4%, a w niektórych miejscach dochodzi do 25%. Siła eksplozji mogła rozrzucić po okolicy sól z pobliskiego Morza Martwego i jego wybrzeży. I to właśnie ta sól mogła spowodować, że na setki lat liczba ludności na tych obszarach Doliny Jordanu zmniejszyła się z dziesiątków tysięcy do być może kilkuset nomadów. Na wysoce zasolonej glebie nic nie rosło, zatem ludzie na wieki opuścili te tereny. Zdobyte dowody wskazują, że w Tall el-Hammam i na okolicznych obszarach ludzie zaczęli osiedlać się około 600 lat po ich gwałtownym opuszczeniu.
      Od czasu odkrycia, iż Tall el-Hammam zostało nagle zniszczone i to być może w wyniku eksplozji meteorytu, toczy się dyskusja, czy nie mogło być ono biblijną Sodomą, jednym z dwóch miast zgładzonych przez Boga za grzechy ich mieszkańców. Opisy z Księgi Rodzaju odpowiadają temu, co mogłoby się dziać podczas eksplozji meteorytu. Nie ma jednak żadnego naukowego dowodu, że zniszczone miasto to rzeczywiście starotestamentowa Sodoma, mówi Kennett. Jeśli nawet nie jest to Sodoma, to losy miasta mogły zainspirować opowieść, którą znajdziemy w Biblii.
      Szczegóły badań nad losami Tall el-Hammam możemy poznać w artykule A Tunguska sized airburst destroyed Tall el-Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2008 roku w pobliżu szkockiej miejscowości Ullapool znaleziono pierwsze dowody na upadek wielkiego meteorytu. Na podstawie warstw materiału pochodzącego z uderzenia stwierdzono, że wydarzenie miało miejsce przed 1,2 miliardami laty w pobliżu wybrzeża. Teraz na łamach Journal of Geological Society zespół z Oxford University, na czele którego stał doktor Ken Amor, poinformowali o znalezieniu krateru. Odkryto go w odległości 15-20 kilometrów na zachód od szkockiego wybrzeża. Krater jest zagrzebany w Minch Basin pod młodszymi skałami.
      "Materiał pochodzący z uderzeń wielkich meteorytów rzadko się zachowuje, gdyż ulega szybkiej erozji. Tym bardziej ekscytujące to odkrycie. Szczęśliwym przypadkiem meteoryt spadł na dolinę ryftową i szybko został przykryty świeżymi osadami, dzięki czemu krater przetrwał. Naszym następnym celem badawczym będzie przeprowadzenie szczegółowych badań geofizycznych", mówi Amor.
      Miejsce upadku meteorytu udało się określić dzięki szczegółowym obserwacjom terenu, rozkładowi rozrzuconego materiału oraz orientacji cząstek magnetycznych.
      Przed 1,2 miliardami lat większość ziemskich organizmów żywych przebywała w oceanach, na lądach nie było żadnych roślin. W tym czasie Szkocja znajdowała się w pobliżu równika i panował w niej półpustynny klimat. Krajobraz nieco przypominał marsjański z płynącą po powierzchni wodą.
      Szacuje się, że do kolizji Ziemi z meteorytami o średnicy około 1 kilometra może dochodzić raz na 100 000 do 1 miliona lat. Szacunki są bardzo niepewne, gdyż z powodu szybkiej erozji kraterów uderzeniowych nie wiemy, do ilu takich zderzeń doszło w przeszłości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Około 3700 lat temu eksplozja meteorytu mogła zniszczyć osadnictwo na północnym brzegu Morza Martwego, wynika z badań przeprowadzonych przez Philipa Silvię z Trinity Southwest University.
      Datowanie radiowęglowe oraz minerały, które krystalizują w wysokiej temperaturze wskazują, że w Ghor w okręgu o średnicy 25 kilometrów doszło do potężnej eksplozji. Silvia i jego zespół uważają też, że w jej wyniku w niegdyś żyzna ziemie zostały wepchnięte olbrzymie ilości wrzącej soli z Morza Martwego. Ludzie nie wrócili na te obszary przez kolejnych 600–700 lat.
      Podczas dorocznego spotkania American Schools of Oriental Research Silvia poinformował, że wykopaliska w pięciu miejscach w Ghor w Jordanii wykazały, że region ten był zamieszkany nieprzerwanie przez co najmniej 2500 lat. Nagle, pod koniec epoki brązu, doszło tam do jednoczesnego upadku wszystkich osad. Poza miejscami wykopalisk w regionie zidentyfikowano co najmniej 120 niewielkich osad. Naukowcy szacują, że w momencie nadejścia kosmicznego kataklizmu region zamieszkiwało 40–60 tysięcy osób.
      Najlepsze dowody wskazujące, że pod koniec epoki brązu doszło tam do eksplozji nisko przelatującego meteorytu znaleziono w mieście Tall el-Hammam, które niektórzy identyfikują z biblijną Sodomą. Silvia i jego zespół pracują w nim od 13 lat. Naukowcy zauważyli, że wykonane z cegieł ściany i mury niemal wszystkich budynków nagle zniknęły przed około 3700 lat. Pozostały tylko kamienne fundamenty. Co wiecej, zewnętrzne ścianki wielu glinianych naczyń zostały stopione. W szklistych pozostałościach w ciągu zaledwie sekundy uformowały się kryształy cyrkonu. Wskazuje to na działanie niezwykle wysokich temperatur, być może sięgających temperatury powierzchni Słońca. Pojawił się też bardzo silny wiatr, który doprowadził do powstania niewielkich niewielkich sfer z rozbitej ceramiki, które jak deszcz opadły na Tall el-Hammam.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...