Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Fuzja jądrowa to bardzo obiecujące, źródło czystej energii. Wciąż jednak istnieją olbrzymie trudności natury technicznej, które uniemożliwiają zbudowanie wydajnego reaktora fuzyjnego. Tymczasem tego typu urządzenia mogłyby na długi czas rozwiązać problemy energetyczne, gdyż posiadamy sporo potencjalnych źródeł taniego paliwa, podczas fuzji nie są produkowane żadne zanieczyszczenia, powstaje jedynie niewielka ilość odpadów radioaktywnych o bardzo krótkim czasie połowicznego rozpadu.

Jednym z największych problemów, z którym borykają się badacze fuzji, jest utrzymanie plazmy z dala od ścian reaktora. Gdy plazma styka się ze ścianami, traci ciepło. Problemem są też wewnętrzne turbulencje, które zmniejszają efektywność reakcji. Z tych powodów dotychczas nie udało się stworzyć eksperymentalnego reaktora, który produkowałby więcej energii niż sam jej potrzebuje do pracy.

Yijun Lin i John Rice z MIT-u opracowali metodę utrzymania plazmy z dala od ścian reaktora za pomocą fal radiowych. Ponadto, jak wykazały eksperymenty, ich technika zapobiega powstawaniu wewnętrznych turbulencji w plazmie.

To bardzo ważne odkrycie, gdyż obecnie stosowane techniki "odpychania" plazmy nie będą sprawdzały się w dużych reaktorach. Działają jedynie w niewielkich urządzeniach eksperymentalnych.

Twórcy nowej technologii przyznają, że sami jej do końca nie rozumieją. Niektóre wyniki testów są "zaskakujące dla teoretyków" - mówi Lin. Dodaje, że obecnie nie istnieje teoria, która potrafiłaby wytłumaczyć część zjawisk i wyjaśnić, dlaczego nowa technika działa.

Testy wykazały jednak, że funkcjonuje ona tak, jakbyśmy tego chcieli i sprawdzi się w dużych reaktorach, takich jak np. ITER.

Odkrycie Rice'a i Lina nadeszło w samą porę. Na całym świecie naukowcy od lat szukali sposobu na kontrolowanie ruchów plazmy i dotąd się to nie udawało. Tymczasem już za osiem lat ma ruszyć ITER i, gdyby nie prace uczonych z MIT-u, cały projekt mógłby spalić na panewce.

Share this post


Link to post
Share on other sites

Wiecie co, patrze na zdjecie artykulu, czytam tytul jeszcze raz patrze na zdjecie i zaczalem sie zastanawiac.....

Czemu ci naukowcy chca miec plazme z dala od scian, gdzie oni widza reaktor w plazmie, co oni chca wlasciwie od mojego KINA DOMOWEGO ?

 

Z takim wlasnie nastawieniem zaczalem czytac artykul, potem sie wszystko wyjasnilo :D

Share this post


Link to post
Share on other sites

Hyhy xD

Tez moim pierwszym skojarzeniem byl jakis ogromny TV, i ze - jak po czesci widac na zdjeciu - ktos wysyla w kierunku owego TV jakies fake radiowe i sa znieksztalcenia ;]

 

W ogole samo pojecie 'plazmy' jest dla mnie abstrakcyjne - co to jest wlasciwie ta plazma? Bo domyslam sie ze raczej nie jest to kleiste-cos, czym strzela sie w grach wideo xD

Share this post


Link to post
Share on other sites
Guest macintosh

Co to jest ta plazma?... w reaktorze czy czym

Share this post


Link to post
Share on other sites

Zdaje się, że jeden ze stanów skupienia. Bo artykuł raczej dotyczy fizyki, nie biologii :D.

 

//edit

 

A tak btw... kiedy dotarły do mnie jakoś dwa lata temu informacje na temat daty powstania ITERu, sądziłem, że wszystko już dopracowano od strony teoretycznej i wystarczy to zbudować. Jak można podawać opinii publicznej datę powstania elektrowni nie wiedząc jak ona będzie działać?

Share this post


Link to post
Share on other sites

Czym jest plazma?

Postaram ująć się to w skrócie i może nie jest to do końca prawda (ale troszke zobrazuje):

Plazmą nazywamy zjonizowany gaz (zazwyczaj o bardzo wysokiej energii -> wysokiej temp.) który w konsekwencji zachowuje się inaczej niż materia pozostałych 3 stanów skupienia ;-)!

 

Co do samego artykułu to muszę przyznać, że odkrycie przełomowe! Powstanie reaktorów fuzyjnych całkowicie wyeliminuje problemy energetyczne ludzkości ;-o!

Share this post


Link to post
Share on other sites
Jak można podawać opinii publicznej datę powstania elektrowni nie wiedząc jak ona będzie działać?

A kto Tobie naopowiadał, że ITER będzie elektrownią? Toć to przecież wyłącznie reaktor eksperymentalny! On ma mieć moc około 1% elektrowni w Bełchatowie, o ile dobrze pamiętam :D

Share this post


Link to post
Share on other sites

A kto Tobie naopowiadał, że ITER będzie elektrownią? Toć to przecież wyłącznie reaktor eksperymentalny! On ma mieć moc około 1% elektrowni w Bełchatowie, o ile dobrze pamiętam :D

 

To ma być coś w rodzaju eksperymentalno-badawczego prototypu. Obecnie istnieje kilka eksperymentalnych reaktorów termojądrowych. Na przykład ten, w którym MIT robił badania. Ale to małe urządzenia. ITER ma być chyba pełnowymiarowym reaktorem, który pozwoli sprawdzić jak działają duże urządzenia tego typu.

Share this post


Link to post
Share on other sites

Z czystej ciekawości sprawdziłem informacje na ten temat. Ciekawy cytat:

 

"ITER is designed to produce approximately 500 MW (500,000,000 watts) of fusion power sustained for up to 1000 seconds [...]. Although ITER is expected to produce (in the form of heat) 5-10 times more energy than the amount consumed to heat up the plasma to fusion temperatures, the generated heat will not be used to generate any electricity."

 

Czyli czas jednorazowej będzie dość krótki, a do tego moc nominalna będzie wynosiła nieco ponad 10% maksymalnej mocy elektrowni w Bełchatowie (4400 MW, ale z możliwością ciągłej pracy). A do tego wydajność pozostawia trochę do życzenia. Być może w przyszłości udałoby się przechwytywać wytwarzane ciepło i przetwarzać je na elektryczność za pomocą zwykłej turbiny parowej. Ale wiadomo, że nie o to chodzi w reaktorze eksperymentalnym :D

 

A w nawiązaniu do samej notki: brakuje, niestety, informacji na temat  ilości energii koniecznej do utrzymania plazmy w miejscu. Przydałoby się, żeby autorzy technologii opublikowali informacje na ten temat.

Share this post


Link to post
Share on other sites

Chociaż wyniki odnośnie mocy mogą pozostawiać na chwilę obecną wiele do życzenia, to tak jak Mariusz Błoński powiedział, będzie to tylko i wyłącznie reaktor eksperymentalny i z pewnością na nim badania się nie skończą.

 

Na całym świecie naukowcy od lat szukali sposobu na kontrolowanie ruchów plazmy i dotąd się to nie udawało.

 

Moim zdaniem w całym artykule należy przede wszystkim zauważyć właśnie ten element

Share this post


Link to post
Share on other sites
Na całym świecie naukowcy od lat szukali sposobu na kontrolowanie ruchów plazmy i dotąd się to nie udawało.

 

Nic dziwnego, PM dalej nie odkryte.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zespół z Lawrence Livermore National Laboratory po raz drugi uzyskał w wyniku fuzji jądrowej (reakcji termojądrowej) więcej energii niż zostało wprowadzone do kapsułki paliwowej. Pierwszy raz o takim wydarzeniu usłyszeliśmy w grudniu ubiegłego roku. Teraz energii uzyskano więcej niż wówczas. Szczegóły poznamy podczas zbliżających się konferencji naukowych oraz z opublikowanych artykułów w recenzowanych magazynach. Musimy jednak pamiętać, że mamy tutaj do czynienia z przełomem naukowym, jednak do wykorzystania energii z fuzji jądrowej droga jeszcze daleka.
      Obecnie potrafimy uzyskiwać energię w elektrowniach atomowych z rozpadu cięższych atomów na lżejsze. Elektrownie atomowe to ekologiczne i stabilne źródło energii, jednak wytwarzają wysoce radioaktywne odpady, które pozostają radioaktywne przez setki i tysiące lat, ponadto opierają się na ograniczonych zasobach paliwa. Wedle różnych szacunków paliwa do nich wystarczy na od 90 do ponad 130 lat.
      Fuzja jądrowa pozbawiona jest tych wad. Polega ona na łączeniu dwóch izotopów wodoru – zwykle deuteru i trytu – w cięższy hel. Powstają przy tym co prawda odpady promieniotwórcze, ale ich promieniotwórczość jest stosunkowo niska i przestają one sprawiać problem w ciągu kilkudziesięciu lat. Ponadto dysponujemy praktycznie nieograniczonymi zasobami wodoru. Dlatego też od dziesiątków lat naukowcy pracują nad opanowaniem fuzji jądrowej i uzyskaniu z niej zysku energetycznego netto. Dotychczas się to nie udało.
      W grudniu ubiegłego roku naukowcy z National Ignition Facility poinfomrowali o uzyskaniu z fuzji jądrowej większej ilości energii niż została wprowadzona do kapsułki z paliwem w celu rozpoczęcia reakcji. Było to ważne wydarzenie z naukowego punktu widzenia. Jednak nie z praktycznego. Ilość energii potrzebna do przeprowadzenia eksperymentu była bowiem co najmniej 100-krotnie większa, niż ilość energii uzyskanej. Teraz ten sam zespół uzyskał więcej energii niż w grudniu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fuzja jądrowa może stać się niewyczerpanym źródłem taniej bezpiecznej i ekologicznej energii. Od jej zastosowania dzielą nas dziesięciolecia, ale naukowcy powoli dokonują małych kroków w stronę jej realizacji. W ubiegłym roku w National Ignition Facility uzyskano więcej energii niż wprowadzono do kapsułki z paliwem. Teraz naukowcy poinformowali o udanym teście dynamicznego formowania kapsułek paliwowych wykorzystywanych przy inercyjnym uwięzieniu plazmy. Nowe kapsułki są tańsze i łatwiejsze w produkcji.
      Stosowane w National Ignition Facility (NIF) inercyjne uwięzienie plazmy polega na oświetleniu potężnymi laserami niewielkiej kapsułki zawierającej izotopy wodoru – deuter i tryt. W wyniku oddziaływania laserów kapsułka jest ściskana olbrzymim ciśnieniem i podgrzewana do wysokich temperatur. W końcu jej osłonka zapada się, dochodzi do zapłonu paliwa i zapoczątkowania fuzji jądrowej. Hipotetyczna elektrownia fuzyjna, działająca w ten sposób, zużywałaby około miliona kapsułek z paliwem dziennie. A obecne metody ich formowania, podczas których stosuje się zamrażanie oraz warstwę kriogeniczną, są bardzo kosztowne i skomplikowane.
      Przed dwoma laty Valeri Goncharov z Laboratory for Laser Energetics na University of Rochester opisał nową metodą formowania kapsułek z paliwem. Teraz, wraz z Igorem Igumenshchevem i innymi naukowcami, przeprowadził eksperyment, podczas którego dowiódł, że opisana metoda rzeczywiście działa.
      W procesie dynamicznego formowania kapsułki krople deuteru i trytu są wstrzykiwane w piankową osłonkę. Gdy taka kapsułka zostanie poddana działaniu laserów, najpierw tworzy się sferyczna osłonka, która następnie ulega implozji, zapada się i dochodzi do zapłonu. Taka metoda produkcji jest łatwiejsza i tańsza niż dotychczas stosowana. Szczegóły eksperymentu zostały opisane na łamach Physical Review Letters.
      Wykorzystanie nowych kapsułek do zainicjowania fuzji będzie wymagało prac nad laserami o dłuższym i silniejszym impulsie, jednak przeprowadzony eksperyment wskazuje, że może być to właściwe rozwiązanie na drodze ku praktycznym elektrowniom fuzyjnym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej.
      Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ostatnich dniach media informowały o przełomie w dziedzinie fuzji jądrowej. W National Ignition Facility (NIF) przeprowadzono fuzję jądrową (reakcję termojądrową), podczas której uzyskano więcej energii niż jej wprowadzono do kapsułki z paliwem. To ważne osiągnięcie naukowe, jednak nie oznacza, że w najbliższym czasie będziemy masowo produkowali energię tą metodą. Ilość pozyskanej energii jest bowiem co najmniej 100-krotnie mniejsza niż ilość energii użytej.
      Cały proces w NIF rozpoczyna się od wygenerowania 1 słabej wiązki lasera, która jest wielokrotnie rozszczepiania i wzmacniana. Po przebyciu 1500 metrów, w cel – kapsułkę z paliwem o średnicy 2-3 milimetrów – trafiają 192 potężne wiązki. Niedawno, 5 grudnia, dostarczyły one do kapsułki 2,05 megadżuli (MJ) energii inicjując reakcję, w wyniku której uwolniło się 3,15 MJ energii. Jednak cały proces generowania wiązek pochłonął... 322 MJ. Jak więc widzimy, tak naprawdę odzyskano około 1% energii, wprowadzonej do paliwa w celu uzyskania zapłonu. A mowa tutaj tylko o energii zużytej przez lasery.
      Co więcej, jeśli chcielibyśmy taką reakcję wykorzystać w praktyce, musielibyśmy jeszcze energię cieplną zamienić na energię elektryczną, np. za pomocą turbiny parowej. Taka zamiana nie jest darmowa i znaczna część energii cieplnej nie ulega zamianie na energię elektryczną. Straty mogą sięgać 50%. A to oznacza, że uzyskalibyśmy 200-krotnie mniej energii, niż włożyliśmy.
      Musimy pamiętać, że NIF to infrastruktura badawcza, a nie komercyjna. Nie projektowano jej pod kątem wydajności, ale z myślą o uzyskaniu najpotężniejszych wiązek laserowych. Instalacja służy trzem celom: badaniom nad kontrolowaną fuzją jądrową, badaniom procesów zachodzących we wnętrzach gwiazd oraz stanowi część programu utrzymania, konserwacji i zapewnienia bezpieczeństwa broni atomowej, bez konieczności przeprowadzania testów nuklearnych.
      Osiągnięcie z 5 grudnia jest istotne z naukowego punktu widzenia. Przede wszystkim udowodniono, że za pomocą inercyjnego uwięzienia plazmy możliwe jest zainicjowanie fuzji jądrowej, w wyniku której uzyskuje się więcej energii niż ta potrzebna do rozpoczęcia reakcji. Udany eksperyment pokazuje też, że NIF pozwoli naukowcom na badanie zjawisk zachodzących podczas eksplozji jądrowych.
      Wielu ekspertów wątpi, czy technologia wykorzystywana przez NIF pozwoli kiedykolwiek na komercyjną produkcję energii. Żeby w ogóle o tym myśleć stosunek energii pozyskanej do energii włożonej musiałby zwiększy się o co najmniej 2 rzędy wielkości. A to tylko jeden z wielu problemów naukowych i technologicznych, jakie należy rozwiązać.
      Wykorzystywane w NIF inercyjne uwięzienie plazmy to technologia inna niż magnetyczne uwięzienie plazmy, którą rozwijają naukowcy pracujący przy tokamakach czy stellaratorach. Każda z nich zmaga się ze swoimi problemami. Jednak wszystkie zapewne odniosą olbrzymie korzyści z osiągnięć specjalistów z National Ignition Facility. Osiągnięcie bowiem tak ważnego punktu w pracach nad fuzją termojądrową zwiększy zainteresowanie tymi technologiami, co powinno przełożyć się na większe inwestycje w ich rozwój. Musimy bowiem pamiętać, że świat potrzebuje nowych źródeł energii. Uranu do elektrowni atomowych wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa napędzana jest trytem i deuterem, które można pozyskiwać z wody i litu. Dostępne na Ziemi zasoby wystarczą na miliony lat.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z National Ignition Facility (NIF) w Lawrence Livermore National Laboratory zauważyli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń. Prowadzone w NIF badania dadzą lepszy wgląd w działanie reaktorów fuzyjnych, w których reakcja inicjowana jest za pomocą potężnych impulsów laserowych.
      Specjaliści z całego świata próbują odtworzyć reakcje fuzji jądrowej zachodzące na Słońcu. Ich opanowanie dałoby ludzkości niemal nieograniczone źródło czystej energii. W NIF wykorzystuje się zespół 192 laserów, za pomocą których kompresuje się kapsułki z trytem i deuterem, zapoczątkowując fuzję jądrową. To koncepcja znana jako ICF (Inertial Confinement Fusion – inercyjne uwięzienie plazmy) Przed kilkoma dniami na łamach Nature Physics opublikowano artykuł, z którego dowiadujemy się, że zmierzona energia neutronów – przynajmniej podczas najbardziej intensywnej fazy fuzji – jest wyższa niż spodziewana.
      To oznacza, że jony biorące udział w fuzji mają większą energię. To coś czego się nie spodziewaliśmy i nie byliśmy w stanie przewidzieć na podstawie standardowych równań opisujących ICF, mówi fizyk Alastair Moore, główny autor artykułu.
      Eksperci nie są pewni, co spowodowało obserwowane zjawisko, podkreślają jednak, że to jeden z najbardziej bezpośrednich pomiarów jonów biorących udział w fuzji. Pomiary oznaczają, że teoretycy będą musieli zmodyfikować teorie i wzory, którymi posługują się specjaliści z NIF. Jest tutaj też powód do optymizmu. Dzięki lepszym teoriom wyjaśniającym obserwowane zjawiska, być może uda się opracować metodę zainicjowania długotrwałej samopodtrzymującej się reakcji.
      Zaobserwowanie niespodziewanego zachowania jonów było możliwe dzięki opracowaniu nowej technologii detektorów, nazwanej Cherenkov nToF. Dzięki niej niepewność odnośnie prędkości neutronów wynosi zaledwie 5 km/s czyli 1/10 000. Średnia energia neutronów uzyskiwana podczas reakcji w NIF oznacza, że poruszają się one z prędkością ponad 51 000 km/s.
      Jednym z możliwych wyjaśnień zaobserwowanego zjawiska jest stwierdzenie, że jony deuteru i trytu nie są w równowadze. Potrzebujemy bardziej zaawansowanych symulacji, by to zrozumieć. Współpracujemy na tym polu z Los Alamos National Laboratory, Imperial College London i MIT, dodaje Moore.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...