Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Co leci z "laserówki"

Rekomendowane odpowiedzi

Naukowcy z Instytutu Fraunhofera postanowili zweryfikować pojawiające się od czasu do czasu doniesienia, jakoby drukarki laserowe podczas pracy emitowały szkodliwe cząsteczki toneru. Uzyskane wyniki zaskoczyły naukowców - okazało się, że pomimo wysokiej temperatury pracy, do otaczającego powietrza nie przedostaje się praktycznie żadna odrobina toneru.

Jednocześnie zauważono, że niektóre drukarki emitują  bardzo małe molekuły organiczne. "Jedną z ich cech jest duża lotność, co wskazywało, że nie mają nic wspólnego z tonerem" - mówi profesor Tunga Salthammer.

Naukowcy opracowali więc metodę, która miała umożliwić im zbadania pochodzenia cząsteczek, ich liczby, wielkości i składu chemicznego. Sprawa była o tyle tajemnicza, że pojawiały się one nawet wówczas, gdy z drukarek wyjęto papier i toner.

Okazało się, że winne są rozgrzewające się wałki, pomiędzy którymi przechodzi zadrukowana kartka w celu utrwalenia toneru. Ulatujące cząstki to m.in. parafiny i oleje krzemowe. Z podobną emisją mamy do czynienia podczas przygotowywania posiłków w kuchni.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Muszki owocowe (Drosophila melanogaster) potrafią odróżnić dwa izotopy wodoru: prot ("zwykły" wodór) i deuter (D). Odkrycie to dużo wnosi do rozumienia działania powonienia. Wiele wskazuje bowiem na to, że dla rozpoznania zapachu istotniejsza jest częstotliwość drgań wiązań niż kształt cząsteczki.
      Dr Efthimios Skoulakis z Centrum Badań Biomedycznych Aleksandra Fleminga w Grecji prezentował owadom acetofenon (C8H8O), organiczny związek chemiczny o intensywnym zapachu kojarzącym się z zasuszonymi różami. Do eksperymentów zespół wykorzystywał labirynt o kształcie litery T. W jednej odnodze znajdowała się cząsteczka ze zwykłym wodorem, a w drugiej z wodorem zastąpionym deuterem. Muszki mogły wybierać, gdzie się skierują.
      D. melanogaster znane są ze swego doskonałego węchu. Zademonstrowały go także i w tym przypadku. Zdecydowanie wolały cząsteczki acetofenonu z większą liczbą atomów protu. Awersja do cząsteczki wysyconej deuterem rosła z liczbą atomów podstawionych D. Gdy do tego samego labiryntu wprowadzono owady pozbawione węchu przez modyfikacje genetyczne, nie uwidaczniały się żadne preferencje.
      Grecko-amerykański zespół dodatkowo potwierdził, że muszki owocowe odróżniają cząsteczki z protem i deuterem. Owady uczono unikania poszczególnych wersji acetofenonu, stosując delikatne rażenie prądem (naukowcy uciekli się więc do warunkowania).
      Skoulakis podkreśla, że uzyskane wyniki wydają się potwierdzać teorię węchu zaproponowaną w 1996 r. przez współautora opisywanego studium doktora Lukę Turina z MIT-u. Postulował on, że substancje zapachowe są wykrywane dzięki drganiom, a nie unikatowemu kształtowi cząsteczek. W jądrze deuteru znajdują się proton i neutron, a w jądrze protu tylko proton. Waga atomu D jest więc ok. 2-krotnie większa, co sprawia, że wiązania między nim a innymi atomami w cząsteczce drgają wolniej. Teoria Turina jest inna od teorii cząsteczki pasującej do kształtu białka receptorowego jak klucz do zamka. Jej autor sądzi, że cząsteczka odorantu pokona błonę receptora tylko wtedy, gdy jej wiązania będą drgać ze ściśle określoną częstotliwością. Acetofenon z protem drga inaczej od acetofenonu z deuterem, cząsteczki pachną więc inaczej, mimo że mają identyczny kształt.
      Na kolejnym etapie badań ekipa uciekła się do nitryli, gdzie częstotliwość drgań jest podobna do odnotowywanej w obrębie wiązań deuter-węgiel. Okazało się, że także i one nie przypadły muszkom do gustu i kręciły na nie nosem.
      Dr Turin ujawnia, że istnieją niepublikowane dane, że psy mogą mieć podobne zdolności co owocówki i ignorują zapachy, które nauczono je wykrywać, jeśli prot zamieniono na deuter.
    • przez KopalniaWiedzy.pl
      Do związanych z nowotworami uszkodzeń DNA dochodzi już wkrótce po wypaleniu papierosa – dowodzą naukowcy z University of Minnesota. Efekt jest widoczny tak szybko, że stanowi odpowiednik wstrzyknięcia substancji bezpośrednio do krwiobiegu.
      W studium wzięło udział 12 ochotników. Akademicy skupili się zwłaszcza na tym, co dzieje się we krwi z jednym z wielopierścieniowych węglowodorów aromatycznych (WWA) - fenantrenie. Dodawano go do wypalanych przez badanych papierosów.
      By WWA zadziałały kancerogennie na płuca, muszą zostać poddane metabolicznej aktywacji. W 3-stopniowej sekwencji tworzą się addukty - w tym wypadku połączenia dwóch substancji chemicznych, czyli DNA i epoksydów dioli (ang. diol epoxide) – które mogą powodować mutacje i rozpoczynać proces nowotworzenia. Co ciekawe, naukowcy po raz pierwszy zbadali ten szlak u ludzi narażonych na kontakt z WWA w wyniku palenia papierosów.
      W eksperymentalnych papierosach wykorzystano stabilną izotopowo pochodną fenantrenu, najprostszego WWA z regionem zatokowym, z wchodzącym w jej skład deuterem (ang. [D10]phenanthrene fenantren). Specjaliści podkreślają, że metabolity WWA wiążą się kowalencyjnie z DNA lub RNA komórki. Szczególne możliwości w tym zakresie mają powstające w I fazie metabolizmu epoksydy dioli, a zwłaszcza te z nich, u których wiązanie epoksydowe znajduje się we wspomnianym wcześniej rejonie zatokowym cząsteczki. Dzieje się tak, ponieważ cechuje go podwyższona reaktywność zarówno biologiczna, jak i chemiczna.
      Po wypaleniu papierosów przez 12 ochotników w osoczu poszukiwano tetraolu [D10]PheT - głównego końcowego związku metabolicznej ścieżki fenantrenu. Okazało się, że trzystopniowa ścieżka prowadząca do powstawania epoksydioli była aktywowana dosłownie w mgnieniu oka. Poziom [D10]PheT w osoczu wszystkich badanych był maksymalny w najwcześniejszych uwzględnianych punktach czasowych (15-30 min po paleniu), a potem spadał.
    • przez KopalniaWiedzy.pl
      Badacze z Uniwersytetu w Leeds, Durham University oraz GlaxoSmithKline (GSK) pracują nad ulepszeniem technologii drukowania tabletek na zamówienie. Wg nich, to sposób na bezpieczniejsze i szybciej działające leki.
      GSK opracowało metodę drukowania substancji czynnych leku na tabletkach. Obecnie proces można by jednak zastosować jedynie do 0,5% wszystkich medykamentów podawanych w formie pigułek. Naukowcy mają nadzieję, że dzięki najnowszemu projektowi odsetek ten wzrośnie do 40%.
      Niektóre substancje czynne można rozpuścić w cieczy, która się będzie potem zachowywać jak zwykły tusz [...]. Jeśli jednak pracujesz ze związkami nierozpuszczalnymi, cząsteczki leku pozostają zawieszone w cieczy, co nadaje preparatowi zupełnie inny charakter i stwarza problemy przy próbach wykorzystania podczas drukowania – wyjaśnia dr Nik Kapur z Leeds.
      Poza tym, dodaje akademik, w przypadku części tabletek, by uzyskać właściwą dawkę, potrzebne będą wyższe stężenia aktywnych czynników, co wpłynie na zachowanie cieczy. W dodatku kropla leku jest 20-krotnie większa od kropli tuszu w standardowym systemie drukarki atramentowej. Eksperci zespołu będą zatem musieli rozwiązać problem, ile kropelek powinno trafić na tabletkę i jak zwiększyć zawartość substancji czynnych w kropli. Nie obejdzie się też bez określenia właściwości i zachowania zawiesiny, kształtu i rozmiarów dyszy drukarki oraz sposobów pompowania zawiesiny przez urządzenie.
      Brytyjczycy sądzą, że drukowany lek powinien działać szybciej, ponieważ substancja czynna znajduje się na powierzchni i nie musi minąć pewien czas, potrzebny na rozłożenie osłonki w układzie pokarmowym i wchłonięcie do krwiobiegu. Co więcej, w przyszłości możliwe stanie się drukowanie wielu leków na jednej pigułce. Dla pacjentów z wieloma dolegliwościami lub leczonych kilkoma preparatami naraz oznacza to wymierne odciążenie żołądka i pamięci.
      Przy takim scenariuszu farmaceutycznym poprawi się także kontrola jakości. Skoro każda preformowana tabletka zawiera tyle samo substancji czynnej, można pominąć niektóre procedury kontrolne i medykament szybciej trafi do odbiorców.
      Pierwsze tabletki zaczęto przygotowywać w starożytnym Egipcie. Obecnie, mimo postępu technologicznego, zasadniczo niewiele się w tym procesie zmieniło: śladowe ilości substancji czynnych miesza się z wypełniaczami, które pozwalają nadać pigułce poręczny do połknięcia rozmiar (inaczej byłyby zbyt małe do zaaplikowania). Problem polega jednak na tym, by w każdej tabletce znalazła się odpowiednia dawka związku czynnego. W tym celu losowo sprawdza się jakąś część partii schodzącej z linii produkcyjnej.
    • przez KopalniaWiedzy.pl
      Jak wiele związków chemicznych może zostać zsyntetyzowanych w odpowiednio zaopatrzonym laboratorium? Zdaniem badaczy z Uniwersytetu w Bernie, liczba takich substancji wynosi aż... 970 milionów.
      Ta astronomiczna liczba jest efektem symulacji przeprowadzonej przez Lorenza C. Bluma i Jeana-Louisa Reymonda, pracowników Wydziału Chemii i Biochemii Uniwersytetu w Bernie.
      Założenia projektu były proste. Jego celem było ustalenie liczby związków, które mogą zostać zsyntetyzowane z maksymalnie pięciu pierwiastków: węgla, azotu, tlenu, siarki oraz chloru. Dodatkowym warunkiem było występowanie w wirtualnej molekule maksymalnie 13 atomów każdego z pierwiastków. Oprócz tego konieczne było potwierdzenie, że każdy z hipotetycznych związków jest możliwy do zsyntetyzowania i na tyle stabilny, by możliwe było jego wykorzystanie.
      Efektem kalkulacji była właśnie oszałamiająca liczba 970 milionów substancji. Powstała w ten sposób baza danych (czy też, jak wolą ją nazywać autorzy, "przestrzeń chemiczna") jest rekordowo długą listą związków nadających się do wytworzenia i potencjalnego użycia np. w terapii. Co ważne, zawartość całej "przestrzeni" została opublikowana, dzięki czemu każdy zainteresowany badacz może z niej korzystać i wytwarzać opisane substancje.
      Wydaje się, że najważniejszym odbiorcą bazy stworzonej przez Bluma i Reymonda będą firmy farmaceutyczne. Dzięki orientacyjnym danym na temat właściwości "wirtualnych związków" ich pracownicy będą mogli przewidzieć, które substancje warto syntetyzować i badać w kierunku ich przydatności w leczeniu.
    • przez KopalniaWiedzy.pl
      Od jak dawna w naturze funkcjonuje dobór naturalny? Zwykliśmy uważać, że od początku życia na Ziemi. Badacze z Uniwersytetu Harvarda uważa jednak, że... jest starszy od najstarszych form ożywionych.
      Dwaj naukowcy zajmujący się zagadnieniami z pogranicza matematyki i biologii, prof. Martin Nowak oraz dr Hisashi Ohtsuki, opracowali model obliczeniowy ewolucji prostych związków chemicznych obecnych na Ziemi na bardzo wczesnych etapach jej istnienia. Model ich autorstwa opiera się na założeniu, że na samym początku na naszej planecie były dostepne wyłacznie najprostsze związki chemiczne. Z nich, w zależności od szeregu uwarunkowań, mogły powstawać kolejne, coraz bardziej złożone.
      Zgodnie z opracowanym modelem, z czasem powinno dochodzić do wzrostu ilości jednych substancji i eliminacji innych ze względu na ich wykorzystanie do syntezy nowych związków. Najważniejszymi czynnikami regulującymi tę zależność są: dostepność substratów ("surowców") do przeprowadzenia kolejnych syntez oraz prawdopodobieństwo zajścia określonej reakcji.
      Stworzona symulacja jest, oczywiście, znacznie uproszczona i nie uwzględnia informacji o wielu czynnikach mogących wpływać na "ewolucję" związków chemicznych. Mimo to wykonane obliczenia pokazują w prostej i przystępnej formie, że ewolucja mogła zachodzić na Ziemi znacznie wcześniej, niż powstały pierwsze organizmy żywe. Jeżeli model ten jest prawdziwy, oznacza to, że bardzo ciężko o uchwycenie momentu, w którym "zaczyna się" życie.
      Jaka jest najważniejsza, zdaniem badaczy, cecha "związku ożywionego"? Ich zdaniem kluczową właściwością takiej substancji jest jej zdolność do replikacji (cechę taką wykazuje m.in. DNA). Im wiekszy jest jej potencjał do namnażania, tym szybciej pochłaniałaby ona cząsteczki innych substancji i tym samym zwiększałby się jej udział w mieszaninie. Jak uważa prof. Nowak, o życiu możemy mówić wtedy, gdy związek zdolny do replikacji osiąga wyraźną przewagę nad pozostałymi: Ostatecznie życie niszczy prażycie, tłumaczy. Pożera rusztowanie, na którym samo powstało.
      Prosta symulacja opracowana przez prof. Nowaka pokazuje, w jaki sposób systemy nieożywione mogły stopniowo ewoluować do postaci, którą możemy uznać za formę życia. Zdaniem naukowca w ogromnej mieszaninie związków nieożywionych wciąż dochodzi do "testowania" nowych substancji pod kątem ich zdolności do nabycia cech organizmu żywego.
      Nie wszyscy naukowcy podzielają entuzjazm autora badań. Część z nich uważa, że projekt ten, choć bardzo atrakcyjny i interesujący, wnosi niewiele informacji przydatnych dla specjalistów nauk eksperymentalnych. Pracująca na tej samej uczelni Irene Chen ocenia, że podchwytliwym zadaniem jest dokładne ustalenie, jakich związków użyć [dla symulacji powstawania życia - red.]. Dodaje: model Martina jest w tej kwestii po prostu agnostyczny.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...