Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Wygląda jak zwykła biała serwetka, ale pozory przecież często mylą. Wyprodukowano ją nie z bawełny czy papieru, ale ze specjalnych włókien polimerowych o rozmiarach 1/800 ludzkiego włosa. Ściereczkę wykrywającą bakterie i inne potencjalnie niebezpieczne biomateriały wytwarza się z kwasu polimlekowego (PLLA), uzyskiwanego z kukurydzy. Polimer połączono z przeciwciałami, które pełnią funkcję bioczujników. Aby ściereczka zadziałała, trzeba nią potrzeć wybrane miejsce.

Wyniki eksperymentów z tym zadziwiającym "urządzeniem" zaprezentowała w poniedziałek (11 września) Margaret Frey z Cornell University.

Zespół Frey posłużył się elektrycznością (wykorzystana technika to tzw. elektrospinnig), by stworzyć matę z włókien PLLA i wbudowanej biotyny, reaktywnej formy witaminy B (nazywa się ją inaczej witaminą H, witaminą B7 czy koenzymem R). Biotyna zawiera przeciwciała dla bakterii E. coli. Kiedy bakterie zostaną wykryte, włókna zmieniają kolor.

Na razie ściereczka wykrywa tylko jeden rodzaj patogenów, ale naukowcy nadal pracują nad swoim wynalazkiem. Na razie możliwe jest wykrycie konkretnej poszukiwanej bakterii, bo wtedy badacze wiedzą, jakie przeciwciała połączyć z włóknami. Nie udało im się także określić, jak niskie stężenia bakterii serwetka jest w stanie wytropić. Zespół Frey testuje inne niż kwas polimlekowy materiały hydrofilne (wykazujące powinowactwo do wody). Jak spekulują chemicy, może już w niedługiej przyszłości będziemy sięgać po chusteczkę do nosa nie tylko po to, by go wytrzeć, ale też sprawdzić, co powoduje ból czy katar.

Artykuł Frey ukaże się wkrótce w piśmie Journal of Membrane Science.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Połączenie łagodnej infekcji i szczepionki wydaje się najbardziej efektywnym czynnikiem chroniącym przed COVID-19, informują naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Główny wniosek z naszych badań jest taki, że jeśli ktoś zachorował na COVID, a następnie został zaszczepiony, to nie tylko znacząco zwiększa się u niego liczba przeciwciał, ale rośnie ich jakość. To zaś zwiększa szanse, że przeciwciała te poradzą sobie z kolejnymi odmianami koronawirusa, mówi profesor Otto Yang z wydziałul chorób zakaźnych, mikrobiologii, immunologii i genetyki molekularnej.
      Wydaje się, że kolejne wystawienia układu odpornościowego na kontakt z białkiem kolca (białkiem S) pozwala układowi odpornościowemu na udoskonalanie przeciwciał u osoby, która chorowała na COVID-19. Uczony dodaje, że nie jest pewne, czy takie same korzyści odnoszą osoby, które przyjmują kolejne dawki szczepionki, ale nie chorowały.
      Grupa Yanga porównała przeciwciała 15 osób, które były zaszczepione, ale nie zetknęły się wcześniej z wirusem SARS-CoV-2 z przeciwciałami 10 osób, które nie były jeszcze zaszczepione, ale niedawno zaraziły się koronawirusem. Kilkanaście miesięcy później 10 wspomnianych osób z drugiej grupy było w pełni zaszczepionych i naukowcy ponownie zbadali ich przeciwciała.
      Uczeni sprawdzili, jak przeciwciała reagują na białko S różnych mutacji wirusa. Odkryli, że zarówno w przypadku osób zaszczepionych, które nie chorowały oraz tych, które chorowały, ale nie były szczepione, możliwości zwalczania wirusa przez przeciwciała spadały w podobnym stopniu gdy pojawiła się nowa mutacja. Jednak gdy osoby, które wcześniej chorowały na COVID-19, były rok po chorobie już w pełni zaszczepione, ich przeciwciała były zdolne do rozpoznania wszystkich mutacji koronawirusa, na których je testowano.
      Nie można wykluczyć, że odporność SARS-CoV-2 na działanie przeciwciał może zostać przełamana poprzez ich dalsze dojrzewanie w wyniki powtarzanej wskutek szczepienia ekspozycji na antygen, nawet jeśli sama szczepionka nie jest skierowana przeciwko danemu wariantowi, stwierdzają naukowcy. Przypuszczają oni, że kolejne szczepienia mogą działać podobnie jak szczepienia po przechorowaniu, jednak jest to tylko przypuszczenie, które wymagają weryfikacji.
      Ze szczegółami badań można zapoznać się w artykule Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści z Duke Human Vaccine Institute odkryli nowy typ przeciwciał antyglikanowych (Ab), które łączy się z zewnętrzną otoczką takich wirusów jak HIV, prowadząc do ich neutralizacji. Nowo zidentyfikowane przeciwciała, które znaleziono zarówno u ludzi jak i makaków, mogą doprowadzić do powstania szczepionek działających zarówno przeciwko SARS-CoV-2 jak i patogenom grzybiczym.
      "To zupełnie nowy rodzaj obrony gospodarza. Te przeciwciała mają spiralny kształt i mogą skutecznie bronić organizmu przed różnymi patogenami", ekscytuje się Barton Haynes, dyrektor Duke Human Vaccine Institute.
      Na powierzchni wielu patogenów, zarówno HIV, SARS-CoV-2 jak i grzybów, dochodzi do ekspresji glikanów. W przypadku HIV ponad 50% zewnętrznej otoczki stanowią glikany. Dlatego też naukowcy od dawna chcieliby wziąć je na cel, znaleźć przeciwciało je rozbijające, co umożliwiłoby neutralizację wirusa. Jednak nie jest to takie proste.
      HIV otoczony jest cukrami, które wyglądają jak glikany gospodarza. Dla układu odpornościowego wirus wygląda więc tak, jak część organizmu, a nie śmiercionośny patogen. Hayes i jego zespół odkryli nowy typ przeciwciał, które potrafią rozpoznać glikany na powierzchni HIV. Uczeni nazwali je przeciwciałami FDG (Fab-dimerized glycan-reactive). Dotychczas w nauce pojawiło się tylko jedno doniesienie o podobnych przeciwciałach. Zidentyfikowano je 24 lata temu i oznaczono jako 2G12. Dotychczas Ab 2G12 były jedynymi znanymi przeciwciałami reagującymi wyłącznie na glikany na powierzchni HIV.
      Teraz naukowcy z Duke zidentyfikowali całą klasę takich przeciwciał. Zawierają one nigdy wcześniej nie obserwowaną strukturę, która przypomina 2G12. Struktura ta pozwala przeciwciałom na bardzo mocne wiązanie się z pewnym specyficznym miejscem w otoczce HIV, ale nie na innych powierzchniach.
      Cechy strukturalne i funkcjonalne tych przeciwciał mogą zostać wykorzystane do zaprojektowania szczepionek biorących na cel glikany HIV, co zapoczątkuje odpowiedź limfocytów B i neutralizację wirusa, stwierdzają autorzy badań.
      Naukowcy zauważyli, że przeciwciała FDG przyłączają się też do Candida albicans oraz różnych wirusów, w tym SARS-CoV-2. Konieczne są dalsze badania dotyczące zarówno bezpieczeństwa stosowania tych przeciwciał, jak i sposobów ich ewentualnego wykorzystania w leczeniu.
      Szczegóły badań opisano w artykule Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Świat ma coraz większy problem z plastikowymi odpadami. By mu zaradzić chemicy z Cornell University opracowali nowy polimer o właściwościach wymaganych w rybołówstwie, który ulega degradacji pod wpływem promieniowania ultrafioletowego, dowiadujemy się z artykułu opublikowanego na łamach Journal of the American Chemical Society.
      Stworzyliśmy plastik o właściwościach mechanicznych wymaganych w komercyjnym rybołówstwie. Jeśli  wyposażenie to zostanie zgubione w wodzie, ulegnie degradacji w realistycznej skali czasowej. Taki materiał może zmniejszyć akumulowanie się plastiku w środowisku, mówi główny badacz, Bryce Lipinski, doktorant z laboratorium profesora Geoffa Coatesa. Uczony przypomina, że zgubione wyposażenie kutrów rybackich stanowi aż połowę plastikowych odpadów pływających w oceanach. Sieci i liny rybackie są wykonane z trzech głównych rodzajów polimerów: izotaktycznego polipropylenu, polietylenu o wysokiej gęstości oraz nylonu-6,6. Żaden z nich nie ulega łatwej degradacji.
      Profesor Coates od 15 lat pracuje na nowym rodzajem plastiku o nazwie izotaktyczny tlenek polipropylenu (iPPO). Podwaliny pod stworzenie tego materiału położono już w 1949 roku, jednak zanim nie zajął się nim Coates niewiele było wiadomo o jego wytrzymałości i właściwościach dotyczących fotodegradacji.
      Lipinski zauważył, że iPPO jest zwykle stabilny, jednak ulega degradacji pod wpływem promieniowania ultrafioletowego. W laboratorium widać skutki tej degradacji, jednak są one niewidoczne gołym okiem. Tempo rozpadu tworzywa zależy od intensywności promieniowania. W warunkach laboratoryjnych łańcuch polimerowy uległ skróceniu o 25% po 30-dniowej ekspozycji na UV. Ostatecznym celem naukowców jest stworzenie plastiku, który będzie rozpadał się całkowicie i nie pozostawi w środowisku żadnych śladów. Lipinski mówi, że w literaturze fachowej można znaleźć informacje o biodegradacji krótkich łańcuchów iPPO. Uczony ma jednak zamiar udowodnić, że całkowitemu rozpadowi będą ulegały tak duże przedmioty jak sieci rybackie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Profesor immunologii Arturo Casadevall z Uniwersytetu Johnsa Hopkinsa pracuje nad unowocześnieniem znanej do stu lat metody walki z chorobami zakaźnymi. Uczony chce pozyskiwać przeciwciała od osób już wyleczonych z COVID-19 i wstrzykiwać je tym, którzy dopiero zachorowali lub są narażeni na szczególne ryzyko. Rozpoczęcie takiej terapii nie wymagałoby eksperymentów ani prac badawczo-rozwojowych. Metodę tę można by wdrożyć w ciągu najbliższych teorii, gdyż bazuje ona na znanym procesie przechowywania krwi, mówi naukowiec.
      Casadevall wraz z zespołem proszą ludzi, którzy przeszli już COVID-19 o oddawanie krwi. Jest z niej izolowane serum. Po jego przetworzeniu i usunięciu innych toksyn, można by je wstrzykiwać osobom chorym lub narażonym zachorowanie.
      Procedura izolowania serum i jego oczyszczania jest znana od dawna i wykonywana standardowo w szpitalach i laboratorich. Koncepcja wykorzystania krwi od osób, które przeszły chorobę zakaźną narodziła się na początku XX wieku. Metoda ta była wielokrotnie używana. W samych USA zapobiegła wybuchowi epidemii odry w 1934 roku.
      Amerykanie nie są jedynymi, którzy chcą do niej powrócić. Testy na ograniczoną skalę przeprowadzili już Chińczycy i uzyskali obiecujące wyniki. Prace nad tą metodą prowadzi też jedna z japońskich firm.
      Eksperci mówią, że głównym wyzwaniem jest tutaj odpowiednie dobranie czasu tak, by zmaksymalizować odpowiedź immunologiczną osoby, której zostanie podane serum. Metoda ta nie jest metodą leczenia. To tymczasowe rozwiązanie, które pomoże w oczekiwaniu na lepsze opcje, jak na przykład szczepionka.
      To możliwe do wykonania, ale wymaga sporego wysiłku organizacyjnego i odpowiednich zasobów... oraz ludzi, którzy wyleczyli się z choroby i będą chcieli oraz mogli oddać krew, mówi Casadevall. Jego zdaniem, jest to dobra metoda lokalnych działań mających na celu zahamowanie epidemii. Przy okazji, można przeprowadzić badania kliniczne na temat jak najbardziej efektywnego wykorzystania serum w tego typu przypadkach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Śląskiego opracowali metodę syntezy, która umożliwia produkcję czystego chemicznie polikaprolaktonu (PCL-u). Jest to polimer ulegający naturalnemu rozkładowi w okresie około dwóch lat. Wykazuje on zgodność tkankową, co oznacza, że może być stosowany w przemyśle farmaceutycznym i medycznym. Dodatkowo polimer ten ma dobre właściwości przetwórcze, jest rozpuszczalny w wielu rozpuszczalnikach organicznych oraz może tworzyć mieszalne blendy polimerowe. Powyższe właściwości sprawiają że ma szerokie zastosowania wielkotonażowe, co przekłada się na zainteresowanie wielu ośrodków naukowych i przemysłowych.
      PCL może być stosowany jako: nośnik w układach kontrolowanego uwalniania leków, podłoże do hodowli tkanek w inżynierii tkankowej bądź materiał wypełniający. Dzięki temu, że naturalnie rozkłada się w organizmie ludzkim, może być również wykorzystywany do produkcji wchłanialnych nici chirurgicznych czy implantów z pamięcią kształtu, takich jak klamry do łączenia złamań kości czy specjalne pręty stosowane do leczenia schorzeń kręgosłupa.
      Zważywszy na interesujące właściwości, polimer ten znajduje także zastosowanie w przemyśle – jako dodatek do opakowań i folii biodegradowalnych, a w połączeniu ze skrobią może być używany do wyrobu tworzywa, z którego otrzymywane są jednorazowe talerzyki czy kubki.
      Ze względu na wielkotonażową produkcję PCL-u i jego szerokie zastosowanie w medycynie, ważne jest usprawnianie procesu jego produkcji, najczęściej poprzez modyfikacje sposobu jego otrzymywania. Docelowo proces ten powinien być kontrolowany w taki sposób, aby producenci otrzymywali PCL o określonych, pożądanych właściwościach przy obniżonych wymaganiach technologicznych.
      Jest to trudne zadanie przede wszystkim ze względu na potencjalne zastosowanie PCL-u w medycynie, gdzie wyprodukowane z niego narzędzia czy obiekty mają kontakt z tkanką ludzką, co wymusza ponadprzeciętną czystość wymaganą przez producentów. Ponadto produkcja tego polimeru powinna być przyjazna dla środowiska naturalnego.
      Interesujące rozwiązanie zaproponowali naukowcy z Uniwersytetu Śląskiego. Zmienili warunki, w których prowadzony jest proces polimeryzacji ε-kaprolaktonu (ε-CL), umożliwiając produkcję polimerów o niespotykanej czystości . Alternatywą okazało się zastosowanie wody jako inicjatora reakcji chemicznej oraz wysokiego ciśnienia jako jej katalizatora. Obecność wody pozwala kontrolować przebieg reakcji, natomiast przeprowadzenie jej w warunkach wysokiego ciśnienia umożliwia otrzymanie produktu o dużej czystości, oznaczającej m.in. brak zawartości jonów metali i zanieczyszczeń organicznych oraz nieorganicznych. Tak otrzymany PCL może być stosowany nie tylko w przemyśle, ale i w medycynie, m.in. do produkcji nici chirurgicznych, jako nośnik leków czy szkielet w inżynierii tkankowej.
      Ponadto zaproponowany sposób ciśnieniowej polimeryzacji ε-kaprolaktonu pozwala na uproszczenie składu mieszaniny reakcyjnej, co skutkuje obniżeniem kosztów produkcji. Opisane rozwiązanie zostało objęte ochroną patentową.
      Autorami wynalazku są pracownicy Wydziału Nauk Ścisłych i Technicznych: mgr inż. Andrzej Dzienia, dr inż. Paulina Maksym, dr hab. Magdalena Tarnacka, dr hab. Kamil Kamiński, prof. UŚ oraz prof. zw. dr hab. Marian Paluch.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...