Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Badacze z Uniwersyteckiego College'u Londyńskiego zidentyfikowali w mózgu obwód nienawiści. Gdy pokazywali ochotnikom zdjęcia znienawidzonych osób, pojawiały się unikatowe wzorce aktywności (PLoS One).

W eksperymencie wzięło udział 17 kobiet i mężczyzn. Twarz kogoś nielubianego demonstrowano im w otoczeniu trzech znajomych, ale neutralnych emocjonalnie fizjonomii. Znienawidzeni ludzie byli eks-kochankami czy rywalami z pracy, czyli osobami z najbliższego otoczenia, a tylko w jednym przypadku podano imię i nazwisko znanego polityka.

Obwód nienawiści obejmował ośrodki rozsiane po różnych obszarach mózgu. Włączał się on podczas oglądania przebrzydłej fizjonomii. Na ile możemy stwierdzić, jest on charakterystyczny dla uczucia nienawiści, mimo że poszczególne rejony uaktywniają się też w innych okolicznościach, niezwiązanych zupełnie z nienawiścią.

W skład obwodu wchodzą ośrodki korowe i podkorowe - tłumaczy profesor Semir Zeki. Jeden z nich odpowiada za przewidywanie zachowań innych ludzi, a to przecież umiejętność, która przydaje się na wypadek kontaktu z wrogiem.

Aktywność odnotowywano też w obrębie skorupy (części prążkowia) i wyspy. Obszary te rozświetlają się podczas oglądania twarzy ukochanej osoby, ale także wiążą się z agresją i uczuciem dyskomfortu. Brytyjczycy uważają, że odkrycie to tłumaczy, dlaczego miłość i nienawiść dzieli tak niewiele.

To na tyle, jeśli chodzi o podobieństwa, ponieważ w porównaniu do nienawiści, spora część kory ulega u zakochanych "wyłączeniu". Naukowcy sądzą, że choć obie emocje wiążą się z dużą namiętnością, zakochani są mniej krytyczni w stosunku do partnera. Osoby znienawidzonej nie można zaś zlekceważyć, bo skutki takiej lekkomyślności mogą być opłakane.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Co definiuje nas, ludzi, jako odrębny i wyjątkowy gatunek? Myślenie abstrakcyjne, język - takie są najczęstsze odpowiedzi. Od dawna było wiadomo, które obszary mózgu odpowiadają za umiejętności językowe, ale tylko mniej więcej. Próby dokładniejszego określenia które to są obszary i co dokładnie robią napotykały na trudności. Wyniki otrzymywane przy użyciu dotychczasowych metod były niepewne i budzące wątpliwości. Potrzeba było innej metodyki badań, jaką zaproponowała Evelina Fedorenko, doktorantka znanego MIT.
      Wiadomo było, że za poszczególne aspekty języka najprawdopodobniej odpowiadają różne obszary mózgu. Wskazywały na to badania osób, które po wypadkach cierpiały na rzadkie i specyficzne trudności w mówieniu: na przykład niemożność układania zdań w czasie przeszłym. Ale próby precyzyjnego umiejscowienia tych obszarów spełzały na niczym. Aktualne techniki obrazowania pracy mózgu dawały mało wiarygodne wyniki. Za przyczynę takiego stanu rzeczy uznano fakt, że dotychczasowe badania opierały się na uśrednionych statystycznie analizach badań wielu osób, co mogło wprowadzać szum statystyczny i zniekształcać wyniki.
      Sposobem na obejście problemu było uprzednie zdefiniowanie „regionów zainteresowania" osobno u każdej z badanych osób. Aby tego dokonać, rozwiązywali oni zadania aktywizujące różne funkcje poznawcze. Opracowane w tym celu przez Evelinę Fedorenko zadanie wymagało czytania na zmianę sensownych zdań oraz ciągu pseudosłów, możliwych do wymówienia, ale nie mających żadnego sensu.
      Na otrzymanych obrazach aktywności mózgu wystarczyło teraz odjąć obszary aktywowane przez pseudosłowa od obszarów uruchamianych przez pełne zdania, żeby precyzyjnie - dla każdego badanego oddzielnie - określić obszary umiejętności językowych. Nowe podejście do badań mózgi pozwoli bardziej precyzyjnie określać obszary kory mózgowej odpowiedzialne za konkretne, poszczególne zdolności poznawcze: muzyczne, matematyczne i inne. Zestaw narzędzi do takich badań został udostępniony na domowej stronie Eveliny Fedorenko. Ma ona nadzieję, że akumulacja wyników przeprowadzanych w laboratoriach na całym świecie przyspieszy rozwój nauk o mózgu.
      Artykuł omawiający wyniki badań przeprowadzonych na McGovern Institute for Brain Research at MIT ukazał się w periodyku Journal of Neurophysiology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Skrajne wcześniactwo wiąże się z dużym ryzykiem uszkodzenia mózgu. Naukowcy z Uniwersytetu Wiedeńskiego i Medycznego Uniwersytetu Wiedeńskiego znaleźli potencjalny cel terapeutyczny, który może pomóc leczyć takie uszkodzenia. Co interesujące, znajduje się on poza mózgiem, a są nim... bakterie mikrobiomu jelit. Uczeni odkryli, że nadmiar bakterii z rodziny Klebsiella w jelitach skrajnych wcześniaków powiązany jest ze zwiększą obecnością pewnych komórek odpornościowych i rozwojem uszkodzeń mózgu.
      Wiemy, że wczesny rozwój jelit, mózgu i układu odpornościowego są ściśle ze sobą powiązane. Związek ten nazywany jest osią jelita-układ odpornościowy-mózg.
      Mikroorganizmy w mikrobiomie jelit – na który składają się setki niezbędnych do życia gatunków bakterii, grzybów, wirusów i innych mikroorganizmów – są u zdrowych osób w stanie równowagi. Jednak u wcześniaków, u których układ odpornościowy i mikrobiom jeszcze się nie w pełni rozwinęły, z dużym prawdopodobieństwem może dojść do zaburzenia tej równowagi. A to negatywnie wpływa na mózg, wyjaśnia główny autor badań, mikrobiolog i immunolog David Seki.
      Naukowcom udało się zidentyfikować liczne wzorce w mikrobiomie i układzie odpornościowym, które są powiązane z głębokością i postępem uszkodzeń mózgu. Co ważne, takie wzorce często ujawniają się, zanim dojdzie do zmian w mózgu. To zaś wskazuje, że istnieje okienko, w którym u skrajnych wcześniaków będziemy mogli powstrzymać uszkodzenia mózgu lub w ogóle im zapobiec, stwierdza David Berry z Uniwersytetu Wiedeńskiego.
      Terapie takich zaburzeń będą możliwe dzięki biomarkerom, które Austriakom już udało się zidentyfikować. Nasze badania pokazują, że nadmierny rozrost Klebsielli i powiązany z tym podniesiony poziom subpopulacji limfocytów Tγδ (gamma delta) najprawdopodobniej zwiększają uszkodzenia mózgu. Byliśmy w stanie wyśledzić ten mechanizm, gdyż jako pierwsi szczegółowo zbadaliśmy, jak u specyficznej grupy noworodków zachodzi interakcja pomiędzy układem odpornościowym, mikrobiomem a rozwojem mózgu, wyjaśnia neonatolog Lukas Wisgrill.
      W badaniach wzięło udział 60 wcześniaków urodzonych przed 28. tygodniem ciąży i ważących mniej niż 1 kilogram. Naukowcy wykorzystali nowoczesne technologie sekwencjonowania genomu, analizowali krew i próbki kału oraz wykorzystywali EEG i rezonans magnetyczny.
      Jak mówią główni autorzy badań, Angelika Berger i David Berry, to dopiero wstęp do jeszcze lepszego zrozumienia rozwoju wcześniaków. Uczeni chcą przez kolejne lata śledzić losy dzieci, które brały udział w ich badaniu. Dopiero po latach dowiemy się, jak pod względem motorycznym i poznawczym będą się te dzieci rozwijały. Naszym celem jest zrozumienie, w jaki sposób bardzo wczesny rozwój osi jelita-układ odpornościowy-mózg wpływa na długoterminowy rozwój, stwierdza Berger.
      Ze szczegółowymi wynikami badań można zapoznać się w artykule Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage opublikowanym na łamach Cell Host & Microbe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mimo że czas wielkich odkryć geograficznych mamy dawno za sobą to – jak się okazuje – i w XXI wieku zdarza się napotkać nieznany dotychczas ląd. Takiego odkrycia dokonała właśnie ekspedycja naukowa z Uniwersytetu Kopenhaskiego. Uczeni badali północne obszary Granlandii i niespodziewanie dla samych siebie trafili na najbardziej na północ wysuniętą wyspę na Ziemi.
      Duńscy naukowcy wybrali się w lipcu na – jak sądzili – najbardziej na północ wysuniętą wyspę, Oodaaq. Ich zadaniem było zebranie próbek, na podstawie których chcieli lepiej poznać warunki panujące na tym terenie. Byliśmy pewni, że wyspa, na której się znajdujemy to Oodaaq, najbardziej na północ wysuniętą wyspą na kuli ziemskiej. Ale gdy opublikowałem w mediach społecznościowych zdjęcia z ekspedycji wraz z koordynatami, rzuciła się na mnie grupa amerykańskich łowców wysp, którzy stwierdzili, że to nie może być prawda, mówi kierownik wyprawy, Morten Rach z Wydziału Nauk Geograficznych i Zarządzania Zasobami Naturalnymi Uniwersytetu w Kopenhadze.
      „Łowcy wysp” to podróżnicy, których hobby jest poszukiwanie nieznanych wysp. Ich komentarza skłoniły Rascha i jego zespół do skontaktowania się z ekspertem z Duńskiego Uniwersytetu Technicznego. Po badaniach ekspert stwierdził, że w urządzeniach GPS, którymi posługiwali się uczeni z Kopenhagi był błąd. Sądzili, że stoją na Oodaaq, a tymczasem znajdowali się się na nieznanej dotychczas wyspie, położonej o 780 metrów na północ od Oodaaq. Spostrzeżenia eksperta potwierdzono odczytując wskazania GPS śmigłowca, który zawiózł naukowców na wyspę. Nienazwana jeszcze wyspa ma wymiary około 30 x 60 metrów.
      Morten Rasch mówi, że wyspa składa się głównie ze szlamu i żwiru. Zdaniem naukowca, mogła powstać podczas dużego sztormu, który wypchnął materiał z dna, tworząc wyspę. Nikt nie wie, jak długo będzie istniała. Być może zniknie przy kolejnym dużym sztormie, stwierdził naukowiec.
      Pojawienie się wyspy tymczasowo powiększyło terytorium Danii, kraju, do którego należy Grenlandia. Wkrótce terytorium królestwa może się zmniejszyć.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wizyty kontrolne u pediatrów obejmują pomiary wzrostu, wagi i obwodu głowy. Dane porównywane są z tabelami, by sprawdzić, czy dziecko prawidłowo się rozwija. Pomiary te nic nie mówią o rozwoju mózgu. Ewentualne odstępstwa od rozmiarów czaszki mogą wskazywać na problemy z rozmiarami mózgu czy ilością płynu mózgowo-rdzeniowego. Dlatego profesor Steven Schiff z Penn State zaczął się zastanawiać, czy współczesne narzędzia jak rezonans magnetyczny, mogą posłużyć do stworzenia znormalizowanych tabel wzrostu mózgu.
      Schiff i jego zespół opublikowali na łamach Journal of Neurosurgery, Pediatrics, artykuł, w którym omawiają 150 lat badań nad mózgiem oraz analizują zebrane przez siebie dane z 1067 skanów mózgu wykonanych u zdrowych osób w wieku od 13 dni do 18 lat. W zebranych danych uwzględniono płeć, rasę, status społeczno-ekonomiczny oraz lokalizację geograficzną badanych.
      Badania nad rozmiarami mózgu i jego wzrostem prowadzone są od dawna, ale nawet w epoce rezonansu magnetycznego studia, próbujące zdefiniować prawidłowy wzrost objętości mózgu opierają się na małych próbkach, ograniczonych algorytmach czy niepełnej reprezentacji wiekowej. Badania te w niewystarczającym stopniu biorą pod uwagę związek pomiędzy wzrostem mózgu a płynem mózgowo rdzeniowym. Tutaj rozwiązaliśmy oba te problemy, stwierdza główna autorka badań Mallory R. Peterson.
      Pierwszym zdumiewającym spostrzeżeniem było odkrycie, że istnieje różnica w wielkości mózgu pomiędzy chłopcami a dziewczętami. Nawet po uwzględnieniu wielkości ciała, chłopcy mieli większe mózgi niż dziewczynki. Oczywiście, co wiemy od dawna, nie istnieją różnice w poziomie inteligencji pomiędzy obiema płciami. I nasze badania tego nie sugerują. Jednak pokazują one, że istnieje różnica we wzroście mózgu męskiego i kobiecego. I jeśli diagnozujemy czy leczymy dziecko, musimy wiedzieć, kiedy jego mózg nie rozwija się w sposób prawidłowy, mówi Schiff.
      Drugie zaskakujące odkrycie polegało zaś na zauważeniu podobieństw, nie różnic. Niezależnie od płci czy wielkości dziecka, niespodziewanie okazało się, że stosunek pomiędzy wielkością mózgu, a objętością płynu mózgowo-rdzeniowego, jest taki sam. [...] Dotychczas o tym nie wiedziano, a to przecież stosunek płynu mózgowo-rdzeniowego do mózgu jest tym, co próbujemy regulować, gdy leczymy dziecko z wodogłowia, stwierdza uczony.
      Naukowcy chcą teraz badać stosunek wielkości mózgu do objętości płynu mózgowego i mają nadzieję znaleźć mechanizm, który za to odpowiada oraz funkcje, którym ten stały stosunek służy.
      Amerykanie mówią też, że rozstrzygnęli spór dotyczący płata skroniowego. Po 2. roku życia lewy płat skroniowy, w którym ulokowane są ośrodki językowe, jest przez okres dzieciństwa wyraźnie większy niż prawy płat. Jednocześnie jednak hipokamp, którego zaburzenia mogą być przyczyną epilepsji, jest większy w prawym płacie skroniowym.
      Ustalenie prawidłowych krzywych wzrostu tych często zaangażowanych w epilepsję struktur pozwoli nam sprawdzić, czy zostały one uszkodzone lub czy są mniejsze niż powinny, dodaje Schiff. Pozwoli to też lepiej zrozumieć prawidłową wielkość mózgu w późniejszym okresie życia.
      Mózg osiąga największą objętość w okresie dojrzewania. Później się kurczy, a u osób z pewnymi typami demencji kurczy się szybciej. Jeśli lepiej zrozumiemy wzrost mózgu i stosunek wielkości mózgu do objętości płynu mózgowo-rdzeniowego w każdym wieku, to nie tylko poprawimy diagnostykę, ale też metody leczenia, zapewnia Schiff.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie mózgi kurczą się wraz z wiekiem. Dominujący pogląd mówi, że im wyższy poziom wykształcenia danej osoby, tym wolniej przebiega proces kurczenia się mózgu. dotychczas jednak przeprowadzone badania nie dawały jednoznacznej odpowiedzi wskazującej, czy pogląd taki jest prawdziwy. Aż do teraz.
      Badacze z Norweskiego Instytutu Zdrowia Publicznego przyjrzeli się wynikom badań rezonansem magnetycznym mózgów ponad 2000 osób. Uczestników eksperymentu badano trzykrotnie w ciągu 11 lat. To właśnie czyni te badania wyjątkowymi. To długotrwałe studium na dużą skalę, powtórzone na dwóch niezależnych próbkach, jedno z największych tego typu, mówi Lars Nyberg.
      W badaniu wzięły udział osoby w wieku 29–91 lat. Porównywano tempo kurczenia się hipokampu i kory mózgowej u osób, które przed 30. rokiem życia studiowały z osobami, które nie studiowały.
      Okazało się, że mózgi wszystkich osób, niezależnie od poziomu wykształcenia, kurczyły się w podobnym tempie. Co prawda zauważono, że, które studiowały, miały większą pojemność kory mózgowej w kilku miejscach, ale tempo kurczenia się tych miejsc nie było uzależnione od kontaktu z wyższą edukacją.
      Naukowcy podkreślają, że podobne tempo kurczenie się mózgu nie oznacza, że poziom wykształcenia nie ma znaczenia dla tego organu i naszego zdrowia. Jeśli ludzie z wyższym poziomem wykształcenia mają większe mózgi, to ten fakt może odwlekać w czasie wystąpienie demencji i innych objawów związanych z pogarszającym się funkcjonowaniem poznawczym", stwierdzają naukowcy.
      Podstawowy wniosek z badań jest jednoznaczny – tempo kurczenia się mózgów ludzi jest podobne, niezależne od tego, jak długo się uczyli.
      Wyniki badań opublikowano na łamach PNAS.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...