Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Drzewa makadamii akumulują więcej dwutlenku węgla niż pozostałe rośliny i można je wykorzystać do radzenia sobie z efektem cieplarnianym – twierdzą naukowcy z Australii. W 1857 roku roślina została odkryta w stanie Queensland przez Waltera Hilla. Nazywając ją makadamią, botanik upamiętnił przyjaciela Johna McAdama.

Zespół profesora Grahama Jonesa z Centrum Studiów nad Regionalną Zmianą Klimatu na Southern Cross University zauważył, że drzewa z rodzaju Macadamia przechowują 4 tony CO2 na hektar rocznie, podczas gdy w tym samym czasie różne gałęzie przemysłu emitują "tylko" 0,5 t zanieczyszczeń gazowych na hektar. Możliwości makadamii ośmiokrotnie przewyższają więc aktualne zapotrzebowanie.

Ponieważ w Queensland i na północy Nowej Południowej Walii 900 rolników uprawia makadamie na łącznej powierzchni 17 tysięcy hektarów, w ciągu 12 miesięcy są one w stanie unieszkodliwić aż 68 tysięcy dwutlenku węgla.

Badania prowadzono na 38 drzewach (wszystkie mają 23 lata). Dostarczył je Greg James z farmy Deenford koło Balliny. Okazy zmierzono, zważono, przeanalizowano skład drewna oraz możliwości absorbowania CO2.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
(...) zauważył, że drzewa <em>z </em>rodzaju<em> Macadamia </em>przechowują 4 tony CO<sub>2</sub> na hektar rocznie, podczas gdy w tym samym czasie różne gałęzie przemysłu emitują "tylko" 0,5 t zanieczyszczeń gazowych na hektar.

Obsadźmy zatem 1/8 powierzchni Ziemii Macadamiami :D.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Rozkręcono jedno wielkie wariactwo z tym CO2, a do dziś nie wiadomo, czy powoduje on zmiany w klimacie... masakra, na taką skalę manipulują światem już chyba tylko producenci paliw.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To będzie głupie pytanie bo botanikiem to ja nie jestem, myślałem że roślinki jakoś przetwarzają CO2 na tlen  ??? jeśli go tylko magazynują to co jeśli będziemy spalać te drzewa np. w kominku  :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
To będzie głupie pytanie bo botanikiem to ja nie jestem, myślałem że roślinki jakoś przetwarzają CO2 na tlen  jeśli go tylko magazynują to co jeśli będziemy spalać te drzewa np. w kominku 

 

Przywrócisz CO2 do atmosfery, (stanem dobrobytu Planety jest ilość tlenu w atmosferze), w tym czasie nie wiązałeś go z węglem, ropą ani czymś innym z głębi ziemi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zauważ, że (CO)2 stanowi tylko ok. 0,03 stanu airosfery ziemskiej.

Rośliny magazynują węgiel © reabsorpcją zwrotną tlenu, zaś podtlenek chaosu zainkubowany w masie drewna uwolni się do postaci nadtlenku chaosu (CO) do atmosfery.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
są one w stanie unieszkodliwić aż 68 tysięcy dwutlenku węgla.

 

68 tysięcy czego ?? ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nadtlenek chaosu ? Chyba przespałem tą lekcję chemii, bo na innych mi wmawiali że "C" to węgiel. Nawet z łaciny to carbon, a nie chaos.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zdaniem naukowców z University of Cambridge, wpływ wulkanów na klimat jest mocno niedoszacowany. Na przykład w najnowszym raporcie IPCC założono, że aktywność wulkaniczna w latach 2015–2100 będzie taka sama, jak w latach 1850–2014. Przewidywania dotyczące wpływu wulkanów na klimat opierają się głównie na badaniach rdzeni lodowych, ale niewielkie erupcje są zbyt małe, by pozostawiły ślad w rdzeniach lodowych, mówi doktorantka May Chim. Duże erupcje, których wpływ na klimat możemy śledzić właśnie w rdzeniach, mają miejsce najwyżej kilka razy w ciągu stulecia. Tymczasem do małych erupcji dochodzi bez przerwy, więc przewidywanie ich wpływu na podstawie rdzeni lodowych prowadzi do mocnego niedoszacowania.
      Z badań przeprowadzonych przez Chim i jej zespół wynika, że modele klimatyczne nawet 4-krotnie niedoszacowują chłodzącego wpływu małych erupcji wulkanicznych. Podczas erupcji wulkany wyrzucają do atmosfery związki siarki, które gdy dostaną się do górnych jej partii, tworzą aerozole odbijające światło słoneczne z powrotem w przestrzeń kosmiczną. Gdy mamy do czynienia z tak dużą erupcją jak wybuch Mount Pinatubo w 1991 roku, emisja związków siarki jest tak duża, że spadają średnie temperatury na całym świecie. Takie erupcje zdarzają się rzadko. W porównaniu z gazami cieplarnianymi emitowanymi przez ludzi, wpływ wulkanów na klimat jest niewielki, jednak ważne jest, byśmy dokładnie uwzględnili je w modelach klimatycznych, by móc przewidzieć zmiany temperatur w przyszłości, mówi Chim.
      Chim wraz z naukowcami z University of Exeter, Niemieckiej Agencji Kosmicznej, UK Met Office i innych instytucji opracowali 1000 różnych scenariuszy przyszłej aktywności wulkanicznej, a następnie sprawdzali, co przy każdym z nich będzie działo się z klimatem. Z analiz wynika, że wpływ wulkanów na temperatury, poziom oceanów i zasięg lodu pływającego jest prawdopodobnie niedoszacowany, gdyż nie bierze pod uwagę najbardziej prawdopodobnych poziomów aktywności wulkanicznej.
      Analiza średniego scenariusza wykazała, że wpływ wulkanów na wymuszenie radiacyjne, czyli zmianę bilansu promieniowania w atmosferze związana z zaburzeniem w systemie klimatycznym, jest niedoszacowana nawet o 50%. Zauważyliśmy, że małe erupcje są odpowiedzialny za połowę wymuszenia radiacyjnego generowanego przez wulkany. Indywidualne erupcje tego typu mogą mieć niemal niezauważalny wpływ, ale ich wpływ łączny jest duży, dodaje Chim.
      Oczywiście erupcje wulkaniczne nie uchronią nas przed ociepleniem. Aerozole wulkaniczne pozostają w górnych warstwach atomsfery przez rok czy dwa, natomiast dwutlenek węgla krąży w atmosferze znacznie dłużej. Nawet jeśli miałby miejsce okres wyjątkowo dużej aktywności wulkanicznej, nie powstrzyma to globalnego ocieplenia. To jak przepływająca chmura w gorący słoneczny dzień, jej wpływ chłodzący jest przejściowy, wyjaśnia uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Nature opublikowano artykuł, którego autorzy wykazali istnienie związku pomiędzy ewolucją człowieka a naturalnymi zmianami klimatu powodowanymi przez zjawiska astronomiczne. Od dawna podejrzewano, że klimat miał wpływ na ewolucję rodzaju Homo, jednak związek ten trudno udowodnić, gdyż w pobliżu miejsc występowania ludzkich skamieniałości rzadko można znaleźć wystarczająco dużo danych, by opisać klimatu w czasie, gdy ludzie ci żyli.
      Dlatego też naukowcy z Korei Południowej, Niemiec, Szwajcarii i Włoch wykorzystali model komputerowy opisujący klimat na Ziemi na przestrzeni ostatnich 2 milionów lat. To pozwoliło na określenie klimatu, jaki panował w miejscu i czasie, w którym żyli badani przez naukowców ludzi. W ten sposób opisano warunki klimatyczne preferowane przez poszczególne gatunki homininów. Stalo się to punktem wyjścia do stworzenia ewoluującej w czasie mapy z obszarami potencjalnie zamieszkanymi przez naszych przodków.
      Nawet jeśli różne grupy archaicznych ludzi preferowały różny klimat, to wszystkie one reagowały na zmiany klimatu wywoływane takimi zjawiskami astronomicznymi jak zmiana nachylenia ekliptyki, ekscentryczność orbity czy precesję. Zmiany takie mają miejsce w okresach od 21 tysięcy do 400 tysięcy lat, mówi Axel Timmermann, główny autor badań i dyrektor Centrum Fizyki Klimatu na Uniwersytecie Narodowym Pusan w Korei Południowej.
      Uczeni, żeby sprawdzić, czy związek pomiędzy zmianami klimatu a ewolucją rzeczywiście istnieje, powtórzyli swoją analizę, ale zmieniali dane dotyczące datowania poszczególnych skamieniałości, przypadkowo je między sobą podmieniając. Jeśli zmiany klimatu nie miały związku z ewolucją, to takie podmienienie danych nie powinno wpłynąć na wyniki analizy. Okazało się jednak, że wyniki analizy dla danych prawdziwych i przypadkowo wymieszanych zasadniczo się między sobą różniły. Wyraźnie widoczne były różnice we wzorcach wyboru habitatów przez Homo sapiens, Homo neanderthalensis i Homo haidelbergensis. Wyniki te pokazują, że co najmniej na przestrzeni ostatnich 500 000 lat zmiany klimatu, w tym okresy zlodowaceń, odgrywały kluczową rolę w wyborze habitatu przez te gatunki, co z kolei wpłynęło na miejsca znalezienia skamieniałości, mówi Timmermann.
      Postanowiliśmy też poznać odpowiedź na pytanie, czy habitaty różnych gatunków człowieka nakładały się na siebie w czasie i przestrzeni, dodaje profesor Pasquale Raia z Università di Napoli Federico II w Neapolu. Na podstawie tak uzyskanych danych dotyczących nakładających się habitatów, zrekonstruowano drzewo ewolucyjne człowieka. Wynika z niego, że neandertalczycy i denisowianie wyodrębnili się z eurazjatyckiego kladu H. heidelbergensis około 500–400 tysięcy lat temu, a H. sapiens pochodzi z południowoafrykańskiej populacji H. heidelbergensis, od której oddzielił się około 300 tysięcy lat temu.
      Nasza bazująca na klimacie rekonstrukcja drzewa ewolucyjnego człowieka jest więc dość podobna do rekonstrukcji wykonanej w ostatnim czasie na podstawie danych genetycznych lub danych morfologicznych. Dzięki temu możemy zaufać uzyskanym przez nas wynikom, cieszy się doktor Jiaoyan Ruan z Korei Południowej.
      Niezwykłej rekonstrukcji dokonano za pomocą południowokoreańskiego superkomputera Aleph, który pracował nieprzerwanie przez 6 miesięcy, by stworzyć największą z dotychczasowych symulacji przeszłego klimatu. Model obejmuje aż 500 terabajtów danych. To pierwsza ciągła symulacja ziemskiego klimatu obejmująca ostatnie 2 miliony lat i uwzględniająca pojawiania się i znikanie pokryw lodowych czy zmiany w stężeniach gazów cieplarnianych. Dotychczas paleoantropolodzy nie używali tak rozległych modeli paleoklimatycznych. Nasza praca pokazuje, jak przydatne są to narzędzia, dodaje profesor Christoph Zollikofer z Uniwersytetu w Zurichu.
      Uczeni mówią, ze w swoich danych zauważyli interesujący wzorzec dotyczący pożywienia. Wcześni afrykańscy hominini żyjący pomiędzy 2 a 1 milionem lat temu preferowali stabilne warunki klimatyczne, co ograniczało ich do wąskich habitatów. Przed około 800 tysiącami lat doszło do zmiany klimatu, w wyniku której grupa znana pod ogólnym terminem H. heidelbergensis dostosowała się do szerszego spektrum źródeł pożywienia, dzięki czemu mogli wędrować po całym globie, docierając do odległych regionów Europy i Azji, dodaje Elke Zeller z Korei. Nasze badania pokazują, że klimat odgrywał kluczową rolę w ewolucji rodzaju Homo. Jesteśmy, kim jesteśmy, gdyż przez wiele tysiącleci udało nam się dostosowywać do powolnych zmian klimatu, wyjaśnia profesor Timmermann.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
      W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
      Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
      Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
      Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
      Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Już wkrótce elektrownia węglowa Dry Fork znajdująca się w pobliżu miasteczka Gillette w stanie Wyoming będzie wykorzystywała dwutlenek węgla do produkcji materiałów budowlanych. W marcu w elektrowni rozpoczyna się program pilotażowy, w ramach którego CO2 będzie zmieniane w betonowe bloczki.
      Eksperyment prowadzony będzie przez naukowców z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Przez try miesiące każdego dnia będą oni odzyskiwali 0,5 tony dwutlenku węgla i wytwarzali 10 ton betonu. To pierwszy system tego typu. Chcemy pokazać, że można go skalować, mówi profesor Gaurav Sant, który przewodzi zespołowi badawczemu.
      Carbon Upcycling UCLA to jeden z 10 zespołów biorących udział a ostatnim etapie zawodów NRG COSIA Carbon XPrize. To ogólnoświatowe zawody, których uczestnicy mają za zadanie opracować przełomową technologię pozwalającą na zamianę emitowanego do atmosfery węgla na użyteczny materiał.
      W Wyoming są jeszcze cztery inne zespoły, w tym kanadyjski i szkocki. Pozostałych pięć drużyn pracuje w elektrowni gazowej w Kanadzie. Wszyscy rywalizują o główną nagrodę w wysokości 7,5 miliona dolarów. Zawody zostaną rozstrzygnięte we wrześniu.
      Prace UCLA nad nową technologią rozpoczęto przed około 6laty, gdy naukowcy przyjrzeli się składowi chemicznemu... Wału Hadriana. Ten wybudowany w II wieku naszej ery wał miał bronić Brytanii przed najazdami Piktów.
      Rzymianie budowali mur mieszając tlenek wapnia z wodą, a następnie pozwalając mieszaninie na absorbowanie CO2 z atmosfery. W ten sposób powstawał wapień. Proces taki trwa jednak wiele lat. Zbyt długo, jak na współczesne standardy. Chcieliśmy wiedzieć, czy reakcje te uda się przyspieszyć, mówi Guarav Sant.
      Rozwiązaniem problemu okazał się portlandyt, czyli wodorotlenek wapnia. Łączy się go z kruszywem budowlanym i innymi materiałami, uzyskując wstępny materiał budowlany. Następnie całość trafia do reaktora, gdzie wchodzi w kontakt z gazami z komina elektrowni. W ten sposób szybko powstaje cement. Sant porównuje cały proces do pieczenia ciastek. Mamy oto bowiem mokre „ciasto”, które pod wpływem temperatury i CO2 z gazów kominowych zamienia się w użyteczny produkt.
      Technologia UCLA jest unikatowa na skalę światową, gdyż nie wymaga kosztownego etapu przechwytywania i oczyszczania CO2. To jedyna technologia, która bezpośrednio wykorzystuje gazy z komina.
      Po testach w Wyoming cała instalacja zostanie rozmontowana i przewieziona do National Carbon Capture Center w Alabamie. To instalacja badawcza Departamentu Energii. Tam zostanie poddana kolejnym trzymiesięcznym testom.
      Na całym świecie wiele firm i grup naukowych próbuje przechwytywać CO2 i albo go składować, albo zamieniać w użyteczne produkty. Jak wynika z analizy przeprowadzonej przez organizację Carbon180, potencjalna wartość światowego rynku odpadowego dwutlenku węgla wynosi 5,9 biliona dolarów rocznie, w tym 1,3 biliona to produkty takie jak cementy, asfalty i kruszywa budowlane. Zapotrzebowanie na takie materiały ciągle rośnie, a jednocześnie coraz silniejszy akcent jest kładziony na redukcję ilości węgla trafiającego do atmosfery. To zaś tworzy okazję dla przedsiębiorstw, które mogą zacząć zarabiać na przechwyconym dwutlenku węgla.
      Cement ma szczególnie duży ślad węglowy, gdyż jego produkcja wymaga dużych ilości energii. Każdego roku na świecie produkuje się 4 miliardy ton cementu, a przemysł ten generuje około 8% światowej emisji CO2. Przemysł cementowy jest tym, który szczególnie trudno zdekarbonizować, brak więc obecnie efektywnych rozwiązań pozwalających na zmniejszenie emisji węgla. Technologie wykorzystujące przechwycony CO2 mogą więc wypełnić tę lukę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Celowa działalność rdzennych mieszkańców Ameryki Północnej miała większy wpływ na lasy na wschodnim wybrzeżu niż klimat, wynika z badań przeprowadzonych przez profesora Marca Abramsa z Pennsylvannia State University.
      Rdzenni Amerykanie świetnie zarządzali szatą roślinną i możemy się w tym względzie wiele od nich  nauczyć. Wiedzieli, jak doprowadzić do regeneracji roślin, którymi się żywili, jak zapewnić pożywienie zwierzętom, na które polowali. W tym celu regularnie wypalali lasy, mówi uczony.
      Abrams od 30 lat bada jakość obecnych i dawnych lasów na wschodzie Stanów Zjednoczonych. Zauważył, że od co najmniej 2000 lat lasy te były regularnie wypalane, co doprowadziło do zdominowania ich przez gatunki drzew zaadaptowane do obecności ognia. Gdy rdzenni mieszkańcy tych terenów zostali z nich wyparci, a mieszkańcy USA przestali wypalać lasy, rozpoczęły się zmiany, które doprowadziły do tego, że gatunki takie jak dąb, orzesznik i sosna zaczęły zanikać.
      Wciąż trwa spór o to, czy skład lasów został zdeterminowany głównie przez klimat czy działalność człowieka, ale nowe badania dowodzą, że celowe pożary powodowane przez człowieka były głównym czynnikiem decydującym o tym, jak wyglądały lasy na Wschodzie. To bardzo ważna wiedza, gdyż obecnie zmiany klimatyczne coraz bardziej zaprzątają uwagę naukowców, stwierdza Abrams.
      Uczony podkreśla, że wyniki jego badań nie mają odniesienia do innych regionów. Na zachodzie USA to klimat decydował o składzie lasów. Tamten region doświadczał bowiem większych upałów i większych susz.
      W czasie swoich badań Abrams i jego zespół analizowali pyłki i węgiel drzewny przed setek i tysięcy lat, a uzyskane wyniki porównywali ze współczesnymi danymi dotyczącymi składu lasów. Przyjrzeli się siedmiu typom lasów występujących w północnych i centralnych regionach wschodu Stanów Zjednoczonych.
      Badacze zauważyli, że w lasach najbardziej wysuniętych na północ współczesne dane wskazują na znaczące zmniejszenie się liczby buków, sosen, choin i modrzewi, a znaczny wzrost populacji klonu, jesionu, dębu i jodły. Z kolei lasy położone bardziej na południe były historycznie zdominowane przez dąb i sosnę, a w czasach współczesnych doszło do spadku liczby dębów i kasztanów, zwiększyła się za to liczebność klonu i brzozy.
      Współczesne lasy są zdominowane przez gatunki które są lepiej przystosowane do chłodnego klimatu, lepiej tolerują cień, nie radzą sobie z suszą i ogniem. Liczebność takich gatunków ulega zmniejszeniu gdy las jest regularnie wypalany. Gatunki takie jak dąb zajmują obszary, gdzie dochodzi do pożarów lasów. Co więcej, współczesne zmiany składu lasów powodują, że są one bardziej podatne na susze i pożary, mówi uczony.
      W czasie badań naukowcy wykorzystali też dane dotyczące liczebności populacji. Okazało się, że po setkach lat dość stabilnego poziomu wypalania lasów przez niewielką populację Indian w tym regionie doszło do gwałtownego zwiększenia liczby pożarów, a zjawisko to było związane z europejskim osadnictwem w XIX wieku. Ponadto, jak się okazało, nieliczni rdzenni mieszkańcy tych terenów byli w stanie wypalać duże obszary i robili to regularnie.
      Po roku 1940 doszło do znacznego ograniczenia liczby pożarów, to znacząco wpłynęło na lasy. Od czasu, gdy zaczęto regularną kampanię zapobiegania pożarom lasów, niemal przestało do nich dochodzić, co w znaczny sposób odbiło się na lasach. Przeszliśmy od umiarkowanej liczby pożarów, poprzez zbyt dużą ich liczbę do niemal zaniku pożarów lasów. Musimy wrócić do umiarkowanego wypalania w celu lepszego zarządzania szatą roślinną, mówi uczony.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...