Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Astronomowie z Caltech (California Institute of Technology) oraz brytyjskiego Durham University poinformowali, że udało im się zajrzeć tak daleko w głąb kosmosu, jak nikomu wcześniej. Za pomocą teleskopu Keck na Hawajach byli w stanie zaobserwować galaktykę, oddaloną od Ziemi o 11 miliardów lat świetlnych. Dotychczas możliwa była obserwacja galaktyk odległych o 7-8 miliardów lat.

Jeśli weźmiemy pod uwagę fakt, iż obserwacja odległych obiektów to nic innego jak obserwowanie ich przeszłości, zauważymy, że astronomowie znacznie przybliżyli się do momentu, w którym będą mogli zobaczyć obiekty odległe o 13 miliardów lat. A prawdopodobnie tyle czasu minęło od powstania wszechświata.

Aby zobaczyć tak odległy obiekt, astronomowie wykorzystali dwie sztuczki. Jedna to naturalne zjawisko zaginania światła przez grawitację. Duże obiekty powodują, że przechodzące w ich pobliżu światło zostaje zagięte. Astronomowie wykorzystują takie naturalne kosmiczne "soczewki", gdyż dzięki nim obraz odległych obiektów jest ośmiokrotnie bardziej ostry, niż obiektu obserwowanego bez pośrednictwa "soczewek". Jednak galaktyka, którą obserwowano, jest bardzo mała. Liczy sobie zaledwie kilka tysięcy lat świetlnych. Dlatego też samo ośmiokrotne poprawienie obrazu nie pozwoliłoby na jej obserwację. Uczeni wykorzystali więc technologię optyki adaptacyjnej.

Jej zadaniem jest skompensowanie faktu, iż atmosfera Ziemi rozprasza światło, pogarszając tym samym obraz. Kompensacji tej dokonuje się, mierząc rozproszenie i wprowadzając odpowiednie poprawki. By tego dokonać najpierw oświetla się laserem atmosferę. Promień lasera dociera do cienkiej warstwy sodu, znajdującej się na wysokości około 90 kilometrów i pozostawionej tam przez meteoryty spalające się w atmosferze naszej planety. Promień odbija się od sodu i dociera do głównego lustra teleskopu. Lustro mierzy zakłócenia wywołane przejściem światła przez atmosferę. Dane docierają do komputera, który następnie steruje matrycą niewielkich luster, poruszając o mikrometr każde z nich wielokrotnie w ciągu sekundy. W ten sposób zakłócenia atmosferyczne są eliminowane, a "czysty" obraz jest rejestrowany przez kamerę.

Dzięki obu opisanym technikom uzyskano obraz wyraźniejszy, niż ten dostarczany przez Teleskop Hubble'a którego przecież nie zakłóca atmosfera.

Obserwując odległą o 11 miliardów lat galaktykę, astronomowie odkryli, że wiruje ona podobnie, jak inne galaktyki, jednak, w przeciwieństwie do np. Drogi Mlecznej, nie wykształciła jeszcze ramion.

System optyki adaptacyjnej został zamontowany w teleskopie Keck II w 2004 roku, jednak dotychczas nie był używany do obserwacji tak odległych obiektów.

Odkrycie dokonane przy pomocy teleskopu Keck jest imponujące i pokazuje, ile jeszcze można osiągnąć, korzystając z najnowszych zdobyczy technologii. W ciągu najbliższych kilkunastu lat ma zostać uruchomione urządzenie, które przyćmi Kecka.


Mowa tutaj o Thirty-Meter Telescope (TMT), który będzie wspólnym dziełem Amerykanów i Kanadyjczyków. Lustro TMT będzie miało dziewięciokrotnie większą powierzchnię, niż obszar głównego lustra Kecka. Ponadto nowy teleskop zostanie wyposażony w znacznie bardziej zaawansowaną technologię optyki adaptacyjnej, korzystającą z sześciu laserów. Zostanie wyposażony też w tysiące miniaturowych luster, które będą odpowiedzialne za kompensację zakłóceń obrazu przez atmosferę. W przyszłym roku zapadnie decyzja, czy TMT będzie budowany na Hawajach czy w Chile. Nowy teleskop ma powstać w ciągu 10 lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przepraszam was bardzo, czy wszyscy astronomowie zapomnieli o Polach Hubble'a, zwłaszcza o Ultragłębokim? Przecież widoczne tam galaktyki liczą sobie około 1 mld lat, czyli widzimy je jakie były 12 MLD LAT! Więc to co jest tutaj wypisywane jest kompletną bzdurą i picem na wodę.

 

Dziękuję i czekam na komentarz ;-).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jedna to naturalne zjawisko zaginania światła przez grawitację. Duże obiekty powodują, że przechodzące w ich pobliżu światło zostaje zagięte.

 

przy założeniu, że galaktyki odsuwają się od siebie na podstawie pól grawitacyjnych; tylko, że obecnie wiadomo już, że galaktyki scala nie grawitacja, a elektromagnetyzm

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

przy założeniu, że galaktyki odsuwają się od siebie na podstawie pól grawitacyjnych; tylko, że obecnie wiadomo już, że galaktyki scala nie grawitacja, a elektromagnetyzm

 

ale bzdura, sily elektromagnetyczne przyciagaja sie jak i zarowno odpychaja wiec sily te sie rownowaza.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

13 mld lat swietlnych?

 

Hm skoro szacujemy ze wedle teorii wszechswiat zaczal sie rozrastac 14 mld temu, to czy jak spojrza na wszechswiat tak daleko ze pokaze nam jaki byl 13 mld lat temu, to czy nie spojrzymy w wszechswiat na tyle daleko, ze zobaczymy jak jeszcze go tam nie ma?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A znasz jakiś sposób na potwierdzenie, że widzisz NIC? ;) przecież tyle zobaczysz patrząc poza początek wszechświata D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

przez to mowie, ze nie wiem na cholere wydawac miliony zeby nic zobaczyc ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Co do mojego poprzedniego postu: więcej informacji tutaj http://en.wikipedia.org/wiki/Hubble_Ultra_Deep_Field i w przypisach z tej strony.

 

P.S. Uważam że to trochę dziwne, by szanująca się strona popularnonaukowa publikowała na swoich ramach takie nie w pełni prawdziwe informacje, no ale to nie ja jestem redaktorem więc to nie moja troska ;-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Obejrzałem filmik i nieźle się uśmiałem, zwłaszcza z opisu obok.. Toż to prawie jak Daniken  ::D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie, nie prawdziwe - jak byłem młody też się fascynowałem Danikenem, ale potem sam zacząłem znajdywać w jego teoriach duuużo niespójności..

Czytałem kiedyś książkę, napisaną zbiorowo przez polskich autorów (niestety nie pamiętam tytułu, jak znajdę to napiszę) - w której dokładnie po kolei obalono tezy Danikena.. A jeden z piszących pokusił się nawet o stworzenie ciekawej historii - znasz legendę o 12 rycerzach pod Giewontem? Byłeś kiedyś w katedrze Zygmunta na Wawelu? Jeśli nie, to zobacz - tam są dowody na to że pod Giewontem hibernuje 12 obcych, którzy dawno temu rozbili się na Ziemi :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Daenikena powinno się traktować z przymrużeniem oka, co nie oznacza, że jego główny wątek myślowy jest bezpodstawny. informacje powinno się traktować wybiórczo, ale z głową.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ok, Danikena pomińmy. Ale w tym filmie było mnóstwo bzdur, choćby to że źródłem energii gwiazd nie są siły nuklearne.. A w opisie, o wizerunkach bóstw: "Wtedy to nasi praprzodkowie widzieli na niebie plazmowe zjawiska dziś już nieobecne..." - a czemu to są teraz nieobecne? Elektryczność już nie utrzymuje Wszechświata? :D

Oczywiście, teoria względności nie jest do końca poprawna, bo nie uwzględnia modelu kwantowego, i dlatego od dłuższego czasu trwają prace nad kwantową teorią grawitacji - z czego wyszła m.in. teoria superstrun, ale to już dłuższa historia..

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
"Wtedy to nasi praprzodkowie widzieli na niebie plazmowe zjawiska dziś już nieobecne..." - a czemu to są teraz nieobecne?

 

Bo Wenus już ustaliła swoją orbitę. Zjawiska plazmowe są widoczne na zdjęciach z teleskopu kosmicznego oraz mierzone na bieżąco przez SOHO (są też widoczne gołym okiem ale nie tak spektakularne jak wtedy).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bo Wenus już ustaliła swoją orbitę.

A co ma orbita Wenus do tego ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To teoria, na którą nie ma zbyt wielu dowodów. Wiem że ruch orbitalny Wenus jest bardzo charakterystyczny, ale prawdopodobieństwo, że Wenus przyleciała spoza układu słonecznego jest naprawdę mizerne - nie dość, że w jej ojczystym układzie planetarnym musiałoby zajść podobnie gwałtowne zdarzenie, aby wyrzucić ją z orbity, to następnie musiałaby trafić w nasz układ... nieee, chyba jednak Wenus powstała z tej samej chmurki co Ziemia i Słońce

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

prawdopodobieństwo, że Wenus przyleciała spoza układu słonecznego jest naprawdę mizerne

 

faktem jest, że teksty sumeryjskie (oraz częściowo teksty majów) dokładnie opisują powstanie naszego układu słonecznego, w tym przybycie komety wenus do naszego układu słonecznego, która naturalną koleją rzeczy dostała się na orbitę. mamy nawet szczegółowe dane na temat planety, która istniała w miejscu, gdzie teraz znajduje się pas planetoid.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mogę prosić o jakiegoś linka do tych tekstów, chętnie poczytam :D Zresztą, mamy też szczegółowe teksty Greków, którzy opisują jak powstał świat (wiesz, z Chaosu Uranos i Gaja, potem Kronos i Rea, a dalej już samo poszło), tak samo jest dla innych kultur.. dlaczego teksty Sumerów czy Majów są dla Ciebie bardziej wiarygodne niż te?

A co do Wenus jako komety - jej skład jest zupełnie inny od składu komet, jest też od nich kilkaset razy większa, co przeczy tezie o tym że była kometą.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zgadzam się z Tobą Takashi. Cóż więcej można napisać?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wejście w Wenus miało rzeczywiście antyspecyficzno-burzliwy-charakter-dedominujący-endosferę-formy-regrawitującej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
antyspecyficzno-burzliwy-charakter-dedominujący-endosferę-formy-regrawitującej

 

;D ;D dojmująco-fantastycznie-długie-i-skomplikowano-zwięzłe-wyrażenie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Misja Psyche jeszcze nie dotarła do celu, a już zapisała się w historii podboju kosmosu. Głównym jej celem jest zbadanie największej w Układzie Słonecznym asteroidy Psyche. Przy okazji NASA postanowiła przetestować technologię, z którą eksperci nie potrafili poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera. Agencja poinformowała właśnie, że z Psyche na Ziemię trafił 15-sekudowy materiał wideo przesłany z odległości 31 milionów kilometrów z maksymalną prędkością 267 Mbps. To niemal 2-krotnie szybciej niż średnia prędkość szerokopasmowego internetu w Polsce.
      To, czego właśnie dokonała NASA jest nie zwykle ważnym osiągnięciem. Pozwoli bowiem na znacznie sprawniejsze zbieranie danych z instrumentów pracujących w przestrzeni kosmicznej i zapewni dobrą komunikację z misjami załogowymi odbywającymi się poza orbitą Ziemi.
      Sygnał z Psyche potrzebował około 101 sekund, by dotrzeć do Ziemi. Dane, przesyłane przez laser pracujący w bliskiej podczerwieni trafiły najpierw do Hale Teelscope w Palomar Observatory w Kalifornii. Następnie przesłano je do Jet Propulsion Laboratory w Południowej Kalifornii, gdzie były odtwarzane w czasie rzeczywistym podczas przesyłania. Jak zauważył Ryan Rogalin, odpowiedzialny za elektronikę odbiornika w JPL, wideo odebrane w Palomar zostało przesłane przez internet do JPL, a transfer danych odbywał się wolniej, niż przesyłanie danych z kosmosu. Podziwiając tempo transferu danych nie możemy zapomnieć też o niezwykłej precyzji, osiągniętej przez NASA. Znajdujący się na Psyche laser trafił z odległości 31 milionów kilometrów w 5-metrowe zwierciadło teleskopu. Sam teleskop to również cud techniki. Jego budowę ukończono w 1948 roku i przez 45 lat był najdoskonalszym teleskopem optycznym, a jego zwierciadło główne jest drugim największym zwierciadłem odlanym w całości.
      Po co jednak prowadzić próby z komunikacją laserową, skoro od dziesięcioleci w przestrzeni kosmicznej z powodzeniem przesyła się dane za pomocą fal radiowych? Otóż fale radiowe mają częstotliwość od 3 Hz do 3 Thz. Tymczasem częstotliwość pracy lasera podczerwonego sięga 300 THz. Zatem transmisja z jego użyciem może być nawet 100-krotnie szybsza. Ma to olbrzymie znaczenie. Chcemy bowiem wysyłać w przestrzeń kosmiczną coraz więcej coraz doskonalszych narzędzi. Dość wspomnieć, że Teleskop Webba, który zbiera do 57 GB danych na dobę, wysyła je na Ziemię z prędkością dochodzącą do 28 Mb/s. Zatem jego systemy łączności działają 10-krotnie wolniej, niż testowa komunikacja laserowa.
      Zainstalowany na Psyche Deep Space Optical Communication (DSOC) uruchomiono po raz pierwszy 14 listopada. Przez kolejne dni system sprawdzano i dostrajano, osiągając coraz szybszy transfer danych i coraz większą precyzję ustanawiania łącza z teleskopem. W tym testowym okresie przesłano na Ziemię łącznie 1,3 terabita danych. Dla porównania, misja Magellan, która w latach 1990–1994 badała Wenus, przesłała w tym czasie 1,2 Tb.
      Misja Psyche korzysta ze standardowego systemu komunikacji radiowej. DSOC jest systemem testowym, a jego funkcjonowanie nie będzie wpływało na powodzenie całej misji.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
      Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
      Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
      Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
      Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
      Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
      Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
      Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
      Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
      Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze, badając populacje gwiazd poza Drogą Mleczną, dokonali odkrycia, które może zmienić nasze rozumienie wielu procesów astronomicznych, w tym tworzenia się czarnych dziur, powstawania supernowych oraz tego, dlaczego galaktyki umierają.
      Od lat 50. ubiegłego wieku przyjmuje się, że populacje gwiazd w innych galaktykach są podobne do tej, którą obserwujemy w Drodze Mlecznej – składają się one z gwiazd o dużej, średniej i małej masie. Duńscy naukowcy, na podstawie obserwacji 140 000 galaktyk do których analizy wykorzystano liczne zaawansowane modele, doszli do wniosku, że rozkład mas gwiazd w innych galaktykach wcale nie jest podobny do tego, co obserwujemy w najbliższym sąsiedztwie. Okazało się, że w odległych galaktykach gwiazdy mają zwykle większą masę niż w Drodze Mlecznej i u jej sąsiadów.
      Masa gwiazd wiele nam mówi. Jeśli zmienimy masę gwiazd, zmieni się też liczba supernowych oraz czarnych dziur powstających z masywnych gwiazd. Zatem uzyskane przez nas wyniki oznaczają, że musimy jeszcze raz rozważyć wiele naszych założeń, gdyż odległe galaktyki wyglądają inaczej niż nasza, mówi główny autor badań, Alber Sneppen z Instytutu Nielsa Bohra.
      Założenie, że rozkład wielkości i mas gwiazd z w odległych galaktykach jest taki sam jak w naszej, przyjęto przed około 70 laty dlatego, że nie wyliśmy w stanie wystarczająco szczegółowo galaktyk tych badać. Widzieliśmy jedynie wierzchołek góry lodowej i od dawna podejrzewaliśmy, że założenie, iż inne galaktyki wyglądają jak nasza, nie jest zbyt dobrym założeniem. Nikt jednak nie próbował dowieść, że w innych galaktykach populacje gwiazd wyglądają inaczej. Nasze badania pozwoliły nam to wykazać, a to otwiera drogę do lepszego zrozumienia tworzenia się galaktyk i ich ewolucji, wyjaśnia profesor Charles Steinhardt.
      Naukowcy wykorzystali katalog COSMO, wielką międzynarodową bazę danych zawierającą ponad milion obserwacji światła z galaktyk, od takich znajdujących się w naszym najbliższym sąsiedztwie, po obiekty odległe o 12 miliardów lat świetlnych. Autorzy analizy twierdzą na przykład, że odkryli, dlaczego w pewnym momencie galaktyki przestają tworzyć nowe gwiazdy. Teraz, gdy lepiej określiliśmy masy gwiazd, widzimy nowy wzorzec. Najmniej masywne galaktyki tworzą gwiazdy, a bardziej masywne ich nie tworzą. To wskazuje, że istnieje uniwersalny trend opisujący śmierć galaktyk, mówi Sneppen.
      Z badań wynika również, że większość galaktyk posiada bardziej masywne populacje gwiazd, niż sądzono. Ze szczegółami pracy można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...