Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nazwa firmy "Complete Genomics" nie jest obecnie zbyt szeroko rozpoznawalna. Wygląda jednak na to, że możemy o niej usłyszeć jeszcze wiele razy. Przedstawiciele przedsiębiorstwa planują uruchomienie usługi sekwencjonowania genomu człowieka za przełomową cenę 5000 dolarów.

Udostępnienie usługi klientom indywidualnym jest planowane na najbliższą wiosnę. Firma, mająca swoją siedzibę w kalifornijskim mieście Mountain View, opracowała technologię sekwencjonowania DNA pozwalającą na drastyczne obniżenie kosztów przeprowadzenia tego procesu. Dzięki jej wdrożeniu cena procedury spadła aż dwudziestokrotnie(!) w porównaniu do cen obowiązujących dotychczas.

Ułatwiony dostęp do usługi sekwencjonowania jest najważniejszym krokiem na drodze do tzw. medycyny spersonalizowanej. Zgodnie z jej założeniami, lekarz powinien mieć dostęp do danych o indywidualnych cechach pacjenta, dzięki czemu możliwe jest zoptymalizowanie sposobu leczenia, dawek podawanych leków itp. Dotychczas zbieranie informacji tego typu ograniczało się do pojedynczych genów, które analizowane były głównie w przypadku podejrzenia zwiększonego ryzyka wystąpienia ściśle okreslonej choroby. Teraz, gdy cena badania spadła do tej stosunkowo niedużej kwoty, istnieje ogromna szansa na zebranie znacznie większej ilości danych i wprowadzenie szeroko zakrojonych programów profilaktyki wielu chorób.

Przedstawiciele firmy planują, że w roku 2009 będzie ona w stanie przeprowadzić 1000 reakcji sekwencjonowania DNA, zaś w ciągu kolejnego roku zwiększy swoje "moce przerobowe" dwudziestokrotnie. Warto jednak zaznaczyć, że przedstawiciele Complete Genomics nie udostępnili jeszcze swoich danych żadnemu niezależnemu recenzentowi.

Jednym z założycieli firmy jest Craig Venter - prawdopodobnie najbardziej znany biotechnolog na świecie. Ponieważ naukowiec pracował już wcześniej nad projektem sekwencjonowania genomu człowieka, zebrane wówczas informacje służą dziś jako próba odniesienia wobec nowej technologii. Co ciekawe, jako materiał do badań wykorzystano wówczas własne DNA Ventera.

Aby przeprowadzić sekwencjonowanie DNA zgodnie z założeniami nowej metody, najpierw zostaje ono pocięte na krótkie fragmenty składające się z 80 nukleotydów, czyli jednostek kodujących informację genetyczną (cały genom ma ich aż 3 miliardy). Każdy z tych fragmentów jest następnie łączony z krótkimi syntetycznymi nićmi DNA, a następnie dochodzi do replikacji powstałych kompleksów z wykorzystaniem specjalnego enzymu. Ze względu na charakter fizykochemiczny syntetycznego fragmentu, ma on tendencję do bardzo ścisłego zwijania się do postaci zwanej nanopiłeczkami. Są one tak drobne, że na płytce o wielkości typowego szkiełka mikroskopowego mieści się ich około miliarda. Dzięki tak silnemu "upakowaniu" materiału genetycznego możliwe jest przeprowadzenie całej procedury na pojedynczej płytce, co pozwala na radykalną redukcję zużycia bardzo drogich odczynników.

Gdy nanopiłeczki zostaną osadzone na powierzchni szkiełka, przeprowadza się właściwą reakcję sekwencjonowania. W tym celu wykorzystuje się cząsteczki wzbogacone o barwniki fluorescencyjne. Każda z nich przyłącza się do DNA w losowym miejscu, lecz zawsze do ściśle określonego rodzaju nukleotydu. Powstałe kompleksy oświetla się następnie za pomocą lampy ultrafioletowej, by wywołać świecenie barwnych cząsteczek. Specjalna aparatura pozwala nie tylko na określenie, jaki nukleotyd został związany, lecz także na ustalenie jego pozycji w analizowanej sekwencji. W ten sposób, krok po kroku, możliwe jest odkrycie kolejności wszystkich elementów kodujących informację genetyczną danego osobnika. Schemat ilustrujący całą procedurę jest dostępny tutaj.

Losowe przyłączanie pojedynczych cząsteczek służących jako "sondy" wykrywające nukleotydy jest pomysłem bardzo nowatorskim. Ma ono co najmniej jedną istotną zaletę: zgodnie z założeniami dotychczasowych metod sekwencjonowania konieczne było poprawne odczytanie sekwencji wszystkich kolejnych nukleotydów. Powodowało to powstawanie licznych błędów w trakcie analizy, przez co wiarygodność testu spadała. W przypadku technologii opracowanej przez Complete Genomics każda "sonda" przyłącza się niezależnie od innych, dzięki czemu maleje ryzyko popełnienia "lawiny" błędów.

Co ciekawe, przedstawiciele Complete Genomics nie planują sprzedaży produkowanych przez siebie urządzeń. Zamiast tego uruchomione zostanie ogromne centrum badawcze, w którym realizowana będzie ta usługa. Jak tłumaczy prezes firmy, Cliff Reid, będzie to rozwiązanie bardzo wygodne dla wielu przedsiębiorstw: oni nie chcą kupować własnego instrumentu, chcą kupić dane. Co ciekawe jednak, sekwencja DNA klienta będzie do niego wracała w postaci "surowej", tzn. bez jakiejkolwiek analizy informacji zapisanych w genach. Oznacza to, niestety, że całkowity koszt usługi będzie najprawdopodobniej powiększony o dopłatę związaną z analizą danych przez innego specjalistę. 

Środowisko naukowe nie kryje podziwu dla tego osiągnięcia. Chad Nusbaum, jeden z dyrektorów zarządzających Programem Sekwencjonowania i Analiz Genomu uruchomionym przez Broad Institute, ocenia: nagle ci goście zaczęli mówić o sekwencjonowaniu setek, a nawet tysięcy genomów w ciągu kilku najbliższych lat. Otwiera to niesamowite perspektywy na taki rodzaj nauki, jakiego naprawdę chcemy. Jest to możliwe właśnie dzięki uzyskiwaniu setek sekwencji ludzkiego genomu. Od tego momentu można zacząć zadawać trudne pytania na temat genetyk człowieka.

Podobnego zdania jest Jeffrey Schloss, specjalista pracujący dla amerykańskiego Narodowego Instytutu Badań nad Ludzkim Genomem: Słowo "oszałamiające" wcale nie będzie zbyt wielkie, jeżeli będą mogli to zrobić w naprawdę krótkim czasie. Nie widziałem jednak jakichkolwiek danych i nie znam nikogo, kto by je widział, a jest to, oczywiście, kluczowe.

Wyścig trwa. Biotechnologiczny gigant, firma Applied Biosystems, planuje udostępnienie w najbliższej przyszłości platformy, dzięki której możliwe będzie przeprowadzenie kompletnej analizy genomu za około 10 tysięcy dolarów. Która z firm wygra tę rywalizację, dowiemy się prawdopodobnie w ciągu najbliższych kilku lat.

Share this post


Link to post
Share on other sites

Obiecujące są też techniki fizyczne - praktycznie bez cięcia próbujemy odczytać kolejne nukleotydy. Na przykład przykleić łańcuch do powierzchni i odczytać mikroskopem sił atomowych. Bardziej praktycznie wygląda używając tzw. nanoporów - wymuszamy różnicą potencjałów przechodzenie pojedyńczej nici przez cieńką szczelinę i używając wbudowanych w nią elektrod odczytujemy kolejne zasady. Niestety takie pory wymagają koszmarnej precyzji i na razie chyba działają tylko na komputerach...

 

A może dałoby się wykorzystać naturalne białka kopiujące/transkrybujące DNA ... zamocować i jakoś elektrycznie/magnetycznie czytać w jakim są aktualnie stanie...

Share this post


Link to post
Share on other sites

Mnie tylko jedno dość mocno zastanawia. W jaki sposób oni to robią, że te nanopiłeczki układają się na szkiełku w jakimś określonym porządku (względnie: w jaki sposób maszyna odgaduje, w jakiej kolejności się rozłożyły)? Czy chodzi o jakąś sekwencję na syntetycznej nici, która kotwiczy do ściśle okreslonego miejsca na płytce, czy jak? W artykule źródłowym ani słowa na ten temat ;)

Share this post


Link to post
Share on other sites

Jakto? ;) "Millions of these overlapping pieces are then computationally stitched together to generate the entire sequence."

To jest gigantyczna praca komputera - szukać identycznych fragmentów w nakrywających się ciągach i łączyć je w jeden wielki...

Pytanie jak otrzymują ciągi o długości mniej więcej 80 zasad ... restryktazami chyba ciężko tak precyzyjnie? Wygląda jakby mieli enzym który wycina pojedyńczy histon?

Share this post


Link to post
Share on other sites

Odcinki pomiędzy histonami mają po 180 pz, więc raczej ciężko jest mi to sobie wyobrazić. Poza tym ten cytat też nie do końca tłumaczy całe zagadnienie - przecież nawet jeśli odczytasz zawartość każdej piłeczki poprawnie, nie wiesz jeszcze, w jakiej kolejności należy odczytywać same piłeczki. No, chyba, że na płyce masz w rzeczywistości piłęczki zawierające kilka kopii genomu i możesz sobie z nich złożyć całość. A sondy może i nakładają się na siebie, ale każda z nich wykrywa tylko jeden nukleotyd, więc nakładanie się sond jeszcze nie oznacza, że można tak łatwo ustalić kolejność wszystkich nukleotydów. Co innego gdyby sonda wykrywała np. kilka sąsiednich nukleotydów, ale wykrywa tylko jeden, a reszta to uniwersalny kontekst, taki "zapychacz".

Share this post


Link to post
Share on other sites

Dany fragment pokrywa kilka z takich ciągów ("overlapping"), więc jeśli jakaś sekwecja się powtarza, możemy z dużym prawdopodobieństwem stwierdzić że to kontynuacja...

Owszem - to nie takie proste - na pewno są błędy podczas odczytywania, wiele sekwencji (szczególnie intronowych) ma wiele powtórzeń... za to mamy już kilka ludzkich DNA zsekwencjonowanych, co może pomóc we wstępnej lokalizacji fragmentu ...

 

Z histonami to chyba rzeczywiście przesadziłem ;) ... wystarczy przecież pociąć byle jak a potem jednowymiarową elektroforezą wybrać wymagane długości ... tylko żeby rzeczywiście dostać ładny overlapping...

Share this post


Link to post
Share on other sites

Czyli jednak wyjdzie na to, że rzeczywiście na jednej płytce, podczas jednej analizy, znajduje się kilka kopii jednego genomu. To by wyjaśniało wszystko, a nie jest to jasno napisane w artykule źródłowym.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Od czasu rozkodowania genomu wiemy o mutacjach zachodzących w DNA. Od 1/3 do 1/4 mutacji w sekwencjach kodujących białka to tzw. mutacje synonimiczne. Dochodzi w nich do takiej zmiany pojedynczego nukleotydu w genie, która nie powoduje zmiany aminokwasu w kodowanym białku. Przez lata uważano, że mutacje takie są neutralne. Jednak naukowcy z University of Michigan odkryli właśnie, że większość mutacji synonimicznych to mutacje bardzo szkodliwe.
      Odkrycie, że większość mutacji synonimicznych nie jest neutralnych, może mieć znaczące skutki dla badań nad mechanizmami różnych chorób, badań genetycznych i biologii ewolucyjnej.Tym bardziej, jeśli spostrzeżenia naukowców z Michigan potwierdzą się w przypadku innych genów i organizmów.
      Wiele badań biologicznych opiera się na założeniu, że mutacje synonimiczne są neutralne, więc obalenie tego poglądu niesie ze sobą szeroko zakrojone konsekwencje. Na przykład mutacje synonimiczne nie są brane pod uwagę podczas badań mutacji powodujących choroby, a jak się okazuje, mogą być powszechnie występującym i niedocenianym mechanizmem chorobotwórczym, mówi jeden z autorów badań, Jianzhi Zhang.
      Zhang i jego koledzy wiedzieli, że od dekady pojawiają się pojedyncze dowody wskazujące, że mutacje synonimiczne mogą nie być neutralne. Uczeni postanowili więc sprawdzić, czy to wyjątki od reguły, czy raczej reguła. Naukowcy za cel badań wybrali drożdże z gatunku Saccharomyces cerevisiae. Ich szczepy są szeroko stosowane jako drożdże piekarnicze, piwowarskie czy winiarskie. Wybór padł właśnie na nie, gdyż jedna generacja tych drożdży żyje około 80 minut, a organizmy te są małe, co pozwala na łatwą, precyzyjną i wygodną obserwację wpływu na drożdże dużej liczby mutacji synonimicznych. Za pomocą techniki CRISPR/Ca9 stworzyli ponad 8000 zmutowanych szczepów drożdży. Każdy z tych szczepów posiadał mutacje synonimiczne, niesynonimiczne oraz nonsensowne w jednym z 21 interesujących naukowców fragmentów.
      Następnie naukowcy oceniali stan poszczególnych szczepów, biorąc pod uwagę tempo ich namnażania się w porównaniu ze szczepami kontrolnymi, do których nie wprowadzono mutacji. W ten sposób, badając tempo reprodukcji, naukowcy mogli stwierdzić, czy mutacje są korzystne, szkodliwe czy neutralne.
      Ku ich zdumieniu okazało się, że aż 75,9% mutacji synonimicznych jest wyraźnie szkodliwych, a 1,3% –wyraźnie korzystnych. Anegdotyczne dowody na to, że mutacje synonimiczne nie są neutralne okazały się wierzchołkiem góry lodowej, mówi główny autor badań, Xukang Shen. Zbadaliśmy też mechanizm, za pomocą którego mutacje synonimiczne wpływały na zdrowie drożdży i stwierdziliśmy, że jednym z powodów jest fakt, iż mutacje synonimiczne i niesynonimiczne wpływają na poziom ekspresji genów, dodaje uczony.
      Naukowcy byli zaskoczeni faktem, że olbrzymia większość mutacji synonimicznych nie jest neutralna. Takie wyniki wskazują bowiem, że dla pojawienia się chorób mutacje synonimiczne są niemal równie ważne co mutacje niesynonimiczne.
      Więcej na ten temat można przeczytać na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      O ile nam wiadomo, to pierwszy opublikowany dowód pokrewieństwa pomiędzy współcześnie żyjącą osobą, a osobą znaną z historii, które udało się potwierdzić dzięki tak małej ilości DNA i pomiędzy tak odległymi krewnymi, stwierdzili naukowcy na łamach Science Advances. Zespół genetyków, na którego czele stał profesor Eske Willerslev z University of Cambridge poinformował, że Ernie LaPointe rzeczywiście jest praprawnukiem legendarnego Siedzącego Byka.
      Pan LaPointe już wcześniej dowiódł swojego pokrewieństwa z wielkim wodzem, badając drzewo rodzinne, akty zgonu, narodzin i historyczne dokumenty. Teraz uczeni postawili kropkę nad i. Wykorzystali pukiel włosów Siedzącego Byka oraz materiał pobrany od LaPointe'a i metodą badania autosomalnego DNA dowiedli pokrewieństwa pomiędzy nimi.
      Zidentyfikowanie potomka znanego mężczyzny wyłącznie po linii matki tego potomka pozwoli, jak sądzą naukowcy, przeprowadzić podobne badania dla innych znanych osób. Osiągnięcie jest tym bardziej znaczące, że włosy Siedzącego Byka były w bardzo złym stanie. Przez ponad 100 lat przechowywano je bowiem w temperaturze pokojowej w waszyngtońskim Smithsonian Museum. Przed 14 laty zostały one przekazane LaPointe'owi i jego trzem siostrom.
      Ernie LaPointe chciał udowodnić, że jest potomkiem Siedzącego Byka m.in. dlatego, by mieć prawo do przeniesienia jego szczątków w bardziej godne miejsce.
      Siedzący Byk (Tatanka Iotake) urodził się około 1831 roku w plemieniu Hunkpapów, odłamu Teton Dakotów. Już w wieku 14 lat wziął udział w pierwszej wyprawie wojennej i szybko zdobył sobie uznanie dzielnego wojownika. Awansował w strukturach plemienia, stając się jego przywódcą. Doprowadził do powiększenia terenów łowieckich, dbał o dobrostan swoich ludzi. Z białymi żołnierzami walczył po raz pierwszy w 1863 roku. Już 4 lata później, w uznaniu jego mądrości i odwagi, stanął na czele całego narodu Dakotów (Siuksów). W 1876 roku, pełniąc rolę stratega i przywódcy duchowego, poprowadził – wraz z Szalonym Koniem i Galem – swoich ludzi do zwycięskiej bitwy pod Little Big Horn. Była to największa klęska armii USA w wojnach z Indianami. Z czasem jednak głód zmusił Siedzącego Byka i jego ludzi do poddania się i powrotu do wyznaczonego rezerwatu. Tam Siedzący Byk próbował dbać o swoich ludzi, sprzeciwiając się m.in. sprzedaży ziemi Białym.
      W 1885 roku pozwolono mu – częściowo po to, by pozbyć się popularnego przywódcy – dołączyć do Buffalo Billa i jego Wild West Show. Występy przyniosły Siedzącemu Bykowi międzynarodowy rozgłos.
      W 1889 roku wśród Indian popularność zdobywał prorok Wovoka i jego obrzęd religijny Taniec Ducha. Obiecywał on powrót bizonów i usunięcie białych najeźdźców. Władze próbowały zwalczać to zjawisko. Dnia 15 grudnia 1890 roku indiańska policja i żołnierze przybyli, by aresztować Siedzącego Byka. Wódz zginął podczas próby aresztowania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Etruskowie od dawna fascynują badaczy. Tajemniczy sąsiedzi i rywale Rzymu, który rozwinęli wysoką cywilizację, osiągnęli mistrzostwo w metalurgii i posługiwali się nieindoeuropejskim językiem wciąż są przedmiotem sporów i badań naukowych. Teraz naukowcom z Niemiec, Włoch, USA, Danii i Wielkiej Brytanii udało się zbadać DNA osób powiązanych kulturowo z Etruskami i rzucić nieco światła na ten fascynujący lud.
      Uczeni mieli do dyspozycji genomy 82 osób, które żyły w centralnej i południowej Italii w latach 800 p.n.e. – 1000 n.e. Okazuje się, że pomimo wszelkich różnic kulturowych Etruskowie byli blisko spokrewnieni ze swoimi italskimi sąsiadami, a w ich genomie widać ślady zmian, jakie zachodziły wraz z ważnymi wydarzeniami historycznymi.
      Wiedzę o istnieniu Etrusków przekazali nam rzymscy i greccy pisarze. Jedna z hipotez o ich pochodzeniu, której zwolennikiem był Herodot, mówiła, że Etruskowie to potomkowie emigrantów z Anatolii lub obszaru Morza Egejskiego. Odmiennego zdania był np. Dionizjos z Halikarnasu, który uważał, że kultura etruska jest kulturą autochtoniczną, rozwinęła się na terenie Italii z kultury Villanowa. Obecnie naukowcy skłaniają się ku hipotezie o lokalnym pochodzeniu kultury etruskiej, jednak brak danych z DNA nie pozwalał dotychczas postawić kropki nad i.
      Najnowsze badania DNA, w czasie których specjaliści mieli do dyspozycji próbki z 12 stanowisk archeologicznych, ostatecznie kładą kres hipotezie o anatolijskim pochodzeniu Etrusków. W ich genomie brak bowiem śladów świeżej migracji z tego obszaru. Genom Etrusków jest za podobny do genomu ich italskich sąsiadów, na przykład Rzymian, a znaczna część ich DNA pochodzi od przodków, którzy w epoce brązu przybyli na Półwysep Apeniński z Wielkiego Stepu.
      Tutaj jednak dochodzimy do drugiej, wciąż nierozwiązanej i tym bardziej intrygującej zagadki. Obecnie uważa się, że to ludy stepu niosły ze sobą języki indoeuropejskie, którymi posługują się miliardy ludzi na całym świecie. Zatem pochodzenie języka etruskiego, który nie jest językiem indoeuropejskim, jest tym bardziej intrygującym tajemniczym zjawiskiem. Jak podkreślił profesor David Caramelli z Uniwersytetu we Florencji, zestawienie języka Etrusków z informacją genetyczną na ich temat pokazuje, że przekonanie o tym, iż genetyka wskazuje na język, jest zbyt uproszczone. Tutaj może wchodzić w grę jakiś bardziej złożony proces asymilacji języka wczesnych autochtonów przez Etrusków. Do asymilacji takiej prawdopodobnie dochodziło podczas II tysiąclecia przed Chrystusem, mówi uczony.
      W przypadku kilku zbadanych genomów widzimy domieszkę z Europy Środkowej, wschodnich regionów Morza Śródziemnego czy północy Afryki. Jednak etruska pula genetyczna pozostaje stabilna przez co najmniej 800 lat, aż do Rzymu republikańskiego.
      Jednak w czasach Imperium w środkowej Italii dochodzi do znacznych zmian populacyjnych. Widoczna jest domieszka genów z wschodnich obszarów Śródziemiomorza. Tę pulę genetyczną prawdopodobnie przynieśli ze sobą żołnierze i niewolnicy przemieszczający się po całym Imperium Romanum.
      Zmiany te w sposób oczywisty pokazują, że w czasach Imperium Rzymskiego dochodziło do przemieszczania się ludności na dużą skalę, a ruch ten odbywał się nie tylko w znaczeniu geograficznym ale również w górę i w dół drabiny społecznej, dodaje Johannes Krause, dyrektor Instytutu Antropologii Ewolucyjnej im. Maxa Plancka.
      Do kolejnych dużych zmian w genomie potomków Etrusków dochodzi we wczesnym średniowieczu. Widzimy pochodzącą z tych czasów znaczną domieszkę genów z północy Europy. To zapis ruchów migracyjnych z okresu upadku Zachodniego Cesarstwa Rzymskiego. Wskazuje on, że ludy germańskie, w tym również prawdopodobnie osoby pochodzące z Królestwa Longobardów, pozostawiły znaczący ślad genetyczny w Italii. Później już do tak wielkich zmian nie dochodzi. Wyraźnie bowiem widać kontynuację puli genetycznej z Toskanii i okolic Lazio. To wskazuje, że główny profil genetyczny współczesnych mieszkańców środkowych i południowych Włoch w dużej mierze ukształtował się co najmniej 1000 lat temu.
      Imperium Rzymskie pozostawiło długotrwałe dziedzictwo w profilu genetycznym południowej Europy. Zamknęło lukę genetyczną pomiędzy populacją europejską a populacją wschodnich regionów Morza Śródziemnego, podsumowuje profesor Cosimo Posth z Uniwersytetu w Tybindze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ramach projektu naukowego Nasze Genomy udało się stworzyć bazę wariantów genetycznych populacji Polski, umożliwiając badaczom z całego świata dalsze porównywanie zebranych danych. To wyniki analizy ponad 1000 genomów 0150 poinformowano w czwartek 8 lipca na konferencji prasowej w Warszawie.
      Realizacja przedsięwzięcia była możliwa dzięki współpracy Centralnego Szpitala Klinicznego MSWiA w Warszawie oraz naukowego startupu MNM Diagnostics z Poznania.Do udziału w projekcie zostali zaproszeni naukowcy, bioinformatycy, klinicyści, a także specjaliści z różnych ośrodków w kraju. Badania, które wykonali, pozwoliły na utworzenie bazy danych polskich wariantów genetycznych.
      Jak wyjaśniła dr Paulina Dobosz dyrektor ds. rozwoju naukowego MNM Diagnostics, najważniejsze wnioski wynikające z projektu wskazują, że Polacy nie różnią się znacząco od innych populacji europejskich, ale najbardziej podobne do nas są subpopulacje europejskie GBR (brytyjska) i CEU (osoby pochodzenia europejskiego zamieszkujące amerykański stan Utah).
      Okazało się, że w naszej populacji predyspozycje do posiadania blond włosów są dość znaczne. Najprawdopodobniej Polacy mają większe szanse na piegi i na łysienie typu męskiego. Rzadziej kichamy na słońcu i wcale nie różnimy się pod względem genetycznych uwarunkowań do metabolizmu alkoholu od pozostałych mieszkańców Europy, choć radzimy sobie z tym lepiej niż Azjaci.
      Dr Dobosz podkreśliła jednak, że priorytetem, dla którego powstała baza wariantów jest cel medyczny. Baza ma służyć przede wszystkim naukowcom, klinicystom i diagnostom jako referencja dla prawidłowej interpretacji wyników badań genetycznych. Populacje różnią się bowiem częstością alleli patogennych - czyli takich wariantów danego genu, które powodują choroby. Jak podała, na przykład w polskiej populacji znacznie częściej może występować NBS (Nijmegen Breakage Syndrome) oraz Zespół Smitha-Lemliego-Optiza (SLOS), znany także jako niedobór reduktazy 7-dehydrocholesterolu, który charakteryzuje się licznymi wadami wrodzonymi, a także niepełnosprawnością intelektualną oraz problemami behawioralnymi. Zespół Smitha-Lemliego-Optiza jest jedną z najczęstszych chorób metabolicznych w Polsce.
      Analizie w projekcie poddano genomy ponad 1000 osób - ta pula całych genomów powstała z połączenia zasobów MNM Diagnostics oraz CSK MSWiA. Część materiału pochodziła z projektu “Odporni na COVID”, którego uczestnicy wyrazili zgodę na udział również w innych projektach.
      Jak zauważył dr n. med. Zbigniew J. Król, zastępca dyrektora do spraw klinicznych i naukowych CSK MSWiA w Warszawie, mając tak wiele próbek zebranych w czasie pandemii, uznano, że warto na bazie tak unikalnego materiału zrobić coś więcej. Tak zrodził się pomysł projektu Nasze Genomy. Najstarsza osoba, której genom przeanalizowano w ramach tego przedsięwzięcia naukowego, miała 99 lat. Średni wiek uczestnika to 44,7 lat.
      Zdaniem dr. Króla, w Polsce nie ma wielu badań obejmujących całe genomy. Według niego wyjątkowość Naszych Genomów polega też na tym, że baza zostanie udostępniona wszystkim zainteresowanym naukowcom. Dzięki projektowi możliwe będzie porównywanie naszej populacji z różnymi nacjami m.in. pod kątem zapadalności na różne choroby.
      Dr Dobosz dodała, że dane mogą być użyte w takich badaniach jak analizy porównawcze i epidemiologiczne (jak często występuje dany wariant patogenny w danej populacji), w analizach genealogicznych i antropologicznych oraz w badaniach medycznych.
      Dr Król wyraził nadzieję, że baza wariantów genetycznych będzie wykorzystywana w analizach dotyczących tego, jakie leki w określonych schorzeniach mogą przynieść lepsze lub gorsze efekty i co będzie najbezpieczniejsze dla polskich pacjentów.
      Konferencja zbiegła się w czasie z publikacją w czasopiśmie Nature, w którym naukowcy wskazali 13 obszarów w genomie człowieka mających wyraźny związek z infekcją COVID-19 lub jego ciężkim przebiegiem. Zespół prof. Króla jest jednym z partnerów tych ustaleń. Wspomniane 1 000 genomów od pacjentów biorących udział w projekcie „Odporni na COVID” zasiliło bazę uczestników badania z całego świata.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Centrum Nowych Technologii UW oraz Wydziału Fizyki UW pod kierunkiem prof. Jacka Jemielitego i dr hab. Joanny Kowalskiej, we współpracy z badaczami z Instytutu Chemii Fizycznej PAN, opracowali efektywną metodę dostarczania nukleotydów do komórek, która powoduje destrukcję komórek nowotworowych. Rezultaty swoich prac opisali w czasopiśmie naukowym Chemical Science.
      W artykule Cellular delivery of dinucleotides by conjugation with small molecules: targeting translation initiation for anticancer applications badacze z Centrum Nowych Technologii UW i Wydziału Fizyki UW oraz Instytutu Chemii Fizycznej PAN opublikowali efekty badań prowadzonych pod kierunkiem prof. Jacka Jemielitego i dr hab. Joanny Kowalskiej.
      W publikacji po raz pierwszy pokazano, że analogi kapu efektywnie dostarczone do komórek są w stanie zatrzymać proces podziałów komórek nowotworowych, powodując ich destrukcję (zaplanowaną śmierć komórek nowotworowych). Udowodnienie tego było jednym z większych wyzwań w prowadzonych badaniach.
      Udało się ten problem rozwiązać stosując znakowanie fluorescencyjne cząsteczek oraz zaawansowane techniki mikroskopowe, w których specjalizują się badacze z IChF PAN. Te badania to ważny krok w kierunku nowego rodzaju terapii przeciwnowotworowych opartych na analogach końca 5’ mRNA – mówi dr hab. Joanna Kowalska z Wydziału Fizyki UW.
      Naukowcy wskazują na szerokie potencjalne możliwości zastosowania opisanej metody. –  Metoda zaprezentowana w artykule może mieć charakter ogólny i zostać wykorzystana do dostarczania również innych nukleotydów o potencjale terapeutycznym, co pozwoli na wykorzystanie nukleotydów w leczeniu także innych chorób – podkreśla prof. Jacek Jemielity z CeNT UW.
      Dostarczanie nukleotydów do komórek
      Nukleotydy są m.in. źródłem energii w komórkach, cząsteczkami wykorzystywanymi do sygnalizacji wewnątrzkomórkowej, jak również międzykomórkowej oraz składnikami kwasów nukleinowych i substratami do ich biosyntezy. Ze względu na swoje niezwykle istotne biologiczne funkcje mają bardzo duży potencjał jako terapeutyki. Polarna budowa tych związków powoduje jednak, że nie są one w stanie wnikać do komórek i nie ma naturalnych mechanizmów komórkowych pozwalających na ich dostarczenie.
      Opracowana przez badaczy z UW i PAN metoda polega na łączeniu nukleotydów z niewielkimi cząsteczkami, które mają za zadanie dostarczenie ich do wnętrza komórki. W tym celu naukowcy wykorzystali przede wszystkim cząsteczki cholesterolu, który zapewnia wydajny transport nukleotydów do wnętrza komórek.
      Za pomocą tej metody naukowcy wprowadzili do komórek analogi końca 5’ mRNA (analogi kapu) połączone z cząsteczkami cholersterolu. Koniec 5’ mRNA zaangażowany jest w inicjację procesu translacji mRNA, w wyniku czego powstają w komórkach białka. Analogi kapu potrafią naśladować koniec 5’ mRNA, bezpośrednio oddziałując z białkiem eIF4E, co blokuje biosyntezę białka w komórkach.
      Okazuje się, że w wielu nowotworach mamy do czynienia z nadekspresją białka eIF4E, czyli jest go więcej niż w zdrowych komórkach. To powoduje, że translacji zaczynają ulegać białka onkogenne stymulujące proces powstawania nowotworu. Związanie nadmiarowej ilości białka eIF4E może pozwolić na przywrócenie procesu translacji w komórkach na właściwe tory – wyjaśnia prof. Jacek Jemielity.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...