Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy pomysł na szczepienie

Rekomendowane odpowiedzi

Czy nadchodzi kres tradycyjnych szczepionek na grypę? Naukowcy z Australii twierdzą, że aplikowanie wprost do płuc może znacznie zwiększyć ich skuteczność.

Autorzy odkrycia opublikowali swój raport na łamach czasopisma Mucosal Immunology. Na podstawie eksperymentu wykonanego na owcach wykazali oni, że podanie tradycyjnego preparatu wprost do płuc za pomocą specjalnej rurki, czyli bronchoskopu, pozwala na uzyskanie tego samego efektu ochronnego przy znacznym obniżeniu dawki. Odkrycie to może być szczególnie istotne w sytuacji takiej, jak np. nagły wybuch pandemii grypy, gdy firmy farmaceutyczne z pewnością nie nadążałyby z produkcją dostatecznej ilości preparatu.

Eksperyment polegał na podaniu zwierzętom trzech dawek szczepionki - 1, 5 oraz 15 mikrogramów (1 mikrogram to 1/1000 miligrama) - wprost do płuc. Grupą odniesienia były zwierzęta, u których wykonano standardowy zastrzyk przy użyciu typowej ilości leku, czyli 15 mikrogramów.

Wynik doświadczenia można opisać jako duży sukces. Jak tłumaczy prof. Philip Sutton pracujący w Centrum Biotechnologii Zwierząt Uniwersytetu w Melbourne, dostarczenie [leku] do płuc pozwoliło na uzyskanie około tysiąckrotnie wyższego poziomu przeciwciał w płucach, czyli w miejscu ataku wirusa grypy, w porównaniu do wstrzykiwanej szczepionki. Przeciwciała wytwarzane we krwi i w płucach były zdolne do upośledzenia zdolności wirusa do przyłączania się do receptora używanego do atakowania komórek. Oznacza to, że byłyby one efektywne w razie infekcji.

Uzyskanie wysokiego miana (stężenia) przeciwciał jest szczególnie istotne w przypadku wirusa grypy, który jest rozsiewany drogą kropelkową w bardzo dużych stężeniach. Równie istotny jest fakt, że głównym miejscem odpowiedzi jest płuco, co pozwala na neutralizację wirusa jeszcze przed jego wniknięciem do komórek lub znaczne utrudnienie jego rozsiewania drogą kropelkową. Wytworzenie skutecznych przeciwciał w płucach mogłoby potencjalnie pomóc ograniczyć rozsiewanie zakażenia poprzez blokowanie wirusa jeszcze zanim opuści płuca wraz z oddechem osoby zakażonej, twierdzi prof. Sutton. Badacz zastrzega jednak, że aby nowa metoda została upowszechniona, konieczne jest opracowanie nowych, skuteczniejszych sposobów aplikowania wirusa wprost do płuc. Te stosowane obecnie są, niestety, bardzo nieprzyjemne dla pacjenta.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nowa metoda i bardzo nieprzyjemna  :'(  Ja bym był dalej za pomysłem łączenia szczepionek z atomami złota i natryskiwaniu na skórę, mała dawka i całkowicie bezbolesna metoda  ;D 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale problem jest w tym, że bardzo istotna jest droga podania szczepionki. Szczepionka, by działać optymalnie, powinna być podawana tą samą drogą, którą dostaje się później wirus. Jeśli podajesz ją podskórnie, aktywujesz głównie układ odpornościowy związany z krwią i skórą, a nie w płucach. Tymczasem jeśli wyindukujesz odpowiednio mocną reakcję ze storny płuc, istnieje szansa na neutralizację wirusa zanim jeszcze wejdzie tak naprawdę do organizmu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Odkrycie to może być szczególnie istotne w sytuacji takiej, jak np. nagły <strong>wybuch pandemii </strong>grypy, gdy firmy farmaceutyczne z pewnością nie nadążałyby z produkcją dostatecznej ilości preparatu

 

Czy w takim przypadku nadążano by robić szczepienia nową metodą ? Wydaje mi się że podanie szczepionki zastrzykiem jest szybsze niż "zabawa" z rurkami. Aczkolwiek zwiększenie skuteczności szczepienia samo w sobie jest dobrą wiadomością.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czy w takim przypadku nadążano by robić szczepienia nową metodą ? Wydaje mi się że podanie szczepionki zastrzykiem jest szybsze niż "zabawa" z rurkami.

Oczywiście, że tak. Ale gdyby opracowano prostszą metodę albo przydzielono np. trzy pielęgniarki zamiast jednej, można by było uzyskać lepsze wyniki. Poza tym istnieje zawsze nadzieja na opracowanie jakiejś metody skutecznej i szybkiej aplikacji - może się okazać, że będzie to niedługo możliwe.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Znów dziękujemy czytelnikom! Oliwia przesłała w komentarzu tłumaczenie istotnego artykułu:

Co roku zaleca się ludziom przyjmowanie szczepionki przeciw grypie, co ma oszczędzić im powtarzających się zimą okresów złego samopoczucia. Starszych ludzi straszy się, że bez tej szczepionki ich zdrowie może być poważnie zagrożone. Ostatnimi laty to ostrzeżenie rozciągnięto również na dzieci a obecnie nawet na nastolatków.

Istnieje jednak ogrom danych dowodzących, że szczepionki przeciw grypie wcale nie gwarantują zdrowia w zimie i, prawdę mówiąc, powodują znacznie więcej szkód, niż dają korzyści.

Oto 6 powodów, dla których należy unikać szczepionki przeciw grypie.

1. Brak jakichkolwiek danych potwierdzających jej działanie. Ta szczepionka jest zdolna do ochrony tylko przed określonymi szczepami grypy. Jeśli ktoś zetknie się ze szczepem, przed którym nie jest chroniony, i tak zachoruje na grypę, co zdarza się dość często. W roku 2004 Krajowy Ośrodek Informacji o Szczepionkach (National Vaccine Information Center) podał, że aplikowana wówczas szczepionka nie chroniła przed szczepem, który był przyczyną większości epidemii, jakie wtedy wystąpiły. Badania, których wyniki opublikował w sierpniu magazyn Lancet, mówią wyraźnie o braku korelacji pomiędzy szczepionkami przeciw gry&#172;pie a spadkiem zachorowań na zapalenie płuc. Co więcej, badania przedstawione w Bazie Danych Systematycznych Przeglądów organizacji Cochrane, którymi objęto 260000 dzieci w wieku od 23 miesięcy do 6 lat, ujawniły, że szczepionka przeciw grypie nie jest skuteczniejsza od placebo.

2. Szczepionki przeciw grypie, tak jak i pozostałe, zawierają rtęć, która jest metalem ciężkim ! stanowi poważne zagrożenie dla zdrowia. Rtęć zawarta jest w produkowanym na jej bazie konserwancie o nazwie thimerosal. Ilość rtęci zawarta w wielokrotnej dawce szczepionki przeciw grypie jest 250 razy większa od ilości, która jest oficjalnie uznawana za niebezpieczną. Niekorzystne efekty uboczne rtęci są rozległe i powodują, między innymi, depresję, utratę pamięci, ADD, napady gniewu, niedomogi jamy ustnej, zaburzenia trawienia, niepokój, problemy z układem sercowo-naczyniowym, zaburzenia oddechowe, zakłócenia pracy tarczycy i innych gruczołów oraz osłabienie układu immunologicznego.

3. Szczepionki przeciw grypie zawierają antybiotyki, takie jak neomycyna, polimyksyna B i gentamycyna, które są dodawane w celu eliminacji bakterii mogących dostać się do szczepionek. Dane dowodzą, że te antybiotyki zabija&#172;ją korzystne bakterie, które są konieczne do utrzymania optymalnego stanu zdrowia. Jak na ironię, te antybiotyki osłabiają także układ odpornościowy i powodują nadmierny rozrost drożdżaków (co może prowadzić nawet do raka &#8211; przyp. red.).

4. Szczepionki zawierają jako emulgator Polysorbate 80 (monooleinian polioksyetylenosorbitolu). Jest to toksyczna substancja zdolna do znacznego osłabienia układu odpornościowego i wywołania szoku anafilaktycznego, który może zabić. Jak podaje sekcja 11 karty MSDS (Materiał Safety Data Sheet &#8211; Karta Charakterystyki Niebezpiecznej Substancji) zamieszczonej pod adresem Science lab.com (www.science-lab.com/xMSDS-POLYSORBATE_80-9926645), Polysorbate 80 może wywoływać zaburzenia układu rozrodczego, raka i genetyczne mutacje. Według Pub-Med.Gov noworodki szczurów, którym wstrzyknięto niewielkie dawki Polysorbate 80, doznały poważnych uszkodzeń organów rozrodczych, które często kończyły się bezpłodnością. Proszę wyobra&#172;zić sobie konsekwencje przyjmowania tej substancji przez młode dziewczyny! Nic dziwnego, że poziom bezpłodności rośnie w zastraszającym tempie.

5. Rośnie liczba danych dowodzących, że szczepionki przeciw grypie wywołują chorobę Alzheimera z powodu zwartych w nich aluminium i formaldehydu, które w połączeniu z rtęcią są bardziej toksyczne, niż gdy występują osobno. Wyniki niektórych badań sugerują, że ludzie, którzy przyjmowali szczepionki przeciw grypie przez kolejne 3 do 5 lat, są pięć razy bardziej zagrożeni chorobą Alzheimera niż ci, którzy nigdy ich nie brali.

6. Przy tak wielkiej liczbie niekorzystnych efektów ubocznych wydaje się oczywiste, że szczepionki przeciw grypie są potencjalnie niebezpieczne, zwłaszcza że ich przyjmowanie nie daje żadnej ochrony. Co więcej, są one absolutnie niepotrzebne. Wszystko, czego potrzebujemy, aby cieszyć się dobrym zdrowiem, znajduje się w naturalnej postaci na naszej planecie, zaś wytwory człowieka wcale nam w tym nie pomagają.

(Źródło tego artykułu: Sheryl Walters, &#8222;Six Good Reasons to Avoid the Flu Shot&#8221;, 27 października 2008, http://www.naturalnews.com/024624.html)"

 

C:\Documents and Settings\Jan\Pulpit\YouTube - GRYPA, EPIDEMIA, PANDEMIA - Dr Piotr Bein o niebezpiecznych szczepionkach_ NOVARTIS, BAXTER.mht

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1. Brak jakichkolwiek danych potwierdzających jej działanie. Ta szczepionka jest zdolna do ochrony tylko przed określonymi szczepami grypy.

Czyli bzdura. Najpierw twierdzenie, że nie chroni, a zaraz potem, że chroni.

2. Szczepionki przeciw grypie, tak jak i pozostałe, zawierają rtęć, która jest metalem ciężkim !

Znów bzdura. Nie istnieją jakiekolwiek dane na temat szkodliwości tiomersalu w dawkach podawanych razem ze szczepionkami. Poza tym obecnie trwa wycofywanie szczepionek zawierających tiomersal z rynku.

3. Szczepionki przeciw grypie zawierają antybiotyki, takie jak neomycyna, polimyksyna B i gentamycyna, które są dodawane w celu eliminacji bakterii mogących dostać się do szczepionek. Dane dowodzą, że te antybiotyki zabija¬ją korzystne bakterie, które są konieczne do utrzymania optymalnego stanu zdrowia.

Chciałbym zobaczyć te dane ;D Nawet mililitr czystej gentamycyny miałby problem z wyczyszczeniem organizmu z korzystnych mikrobów, a co tu mówić o mililitrze szczepionki, w której antybiotyku jest kilkadziesiąt nanogramów, czyli po rozcieńczeniu na całą objętość płynów ustrojowych ilość homeopatyczna ;D

4. Szczepionki zawierają jako emulgator Polysorbate 80 (monooleinian polioksyetylenosorbitolu). Jest to toksyczna substancja zdolna do znacznego osłabienia układu odpornościowego i wywołania szoku anafilaktycznego, który może zabić.

Chciałbym zobaczyć szkodliwość przy objętości mililitra i stężeniu na poziomie drobnego ułamka procenta (przy stężeniu powyżej ok. 0,1% białka terapeutyczne zdenaturowałyby) ;D

Wyniki niektórych badań sugerują, że ludzie, którzy przyjmowali szczepionki przeciw grypie przez kolejne 3 do 5 lat, są pięć razy bardziej zagrożeni chorobą Alzheimera niż ci, którzy nigdy ich nie brali.

A chcesz pogadać o tym, ile żyć ratuje się dzięki szczepieniom? A może o tym, że tezę ukuł człowiek bez wykształcenia medycznego? ;D ;D ;D http://www.mayoclinic.com/health/alzheimers-and-flu-shots/MY00486 Mało tego! Istnieją nawet dane na temat tego, że szczepienie przeciwko grypie jest powiązane ze ZMNIEJSZENIEM ryzyka alzheimeryzmu: http://www.ncbi.nlm.nih.gov/pubmed/11762573?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

6. Przy tak wielkiej liczbie niekorzystnych efektów ubocznych wydaje się oczywiste, że szczepionki przeciw grypie są potencjalnie niebezpieczne, zwłaszcza że ich przyjmowanie nie daje żadnej ochrony.

Przy tak wielkiej ilości bzdur wydaje się oczywiste, że Barbara kolejny raz napisała rzeczy, którymi nie ma sensu się przejmować.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

,,Przy tak wielkiej ilości bzdur wydaje się oczywiste, że Barbara kolejny raz napisała rzeczy, którymi nie ma sensu się przejmować"

Ty absolutnie nie musisz się tym przejmować!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli jest to najsilniejszy z zarzutów przeciwko przedstawionym przeze mnie argumentom, to mówi to samo za siebie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Super, usiadł facet na ławeczce i mówi, że szczepionkę zsyntetyzowano ;D (A ja usiadłem przed kompem i uwierzyłem :P ) A argumentem na poparcie tezy o śmiertelności zwierząt pod wpływem szczepionki są zdjęcia martwych łasic (?) leżących na asfalcie ;D Uwielbiam takie filmy!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Temat autyzmu był już omawiany nawet na KW. Naprawdę nie chce mi się dyskutować z takimi argumentami. Dalej komentować nie będę, bo zwyczajnie nie widzę sensu - chyba pokazałem już dostatecznie dobrze, na ile można ufać prezentowanym przez Ciebie rewelacjom.

 

A swoją drogą bardzo interesujące jest to, że Hiroshima City University nie przyznaje się na swoich stronach do współpracy z Piotrem Beinem ;D W archiwum Guardiana też ani wzmianki o tym nazwisku ;D To chyba tyle na temat wiarygodności i referencji tego osobnika.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Naprawdę nie chce mi się dyskutować z takimi argumentami.

    NAPRAWDĘ NIE MUSISZ

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Większość szczepionek wymaga wielokrotnego podania przed osiągnięciem maksymalnej odporności przez osobę zaszczepioną. Badacze z MIT postanowili zaradzić temu problemowi i opracowali mikrocząstki, które można dopasować tak, by uwalniały swoją zawartość w określonych momentach. W ten sposób mikrocząstki wprowadzone do organizmu podczas pierwszego szczepienia, samodzielnie uwalniałyby w określonym czasie dawki przypominające.
      Tego typu szczepionka byłaby szczególnie przydatna podczas szczepień dzieci w tych regionach świata, gdzie dostęp do opieki medycznej jest utrudniony. Podanie kolejnych dawek nie wymagałoby wówczas trudnego organizacyjnie i logistycznie spotkania z lekarzem czy pielęgniarką.
      Nasza platforma może być stosowana do wszelkich typów szczepionek, w tym do rekombinowanych szczepionek antygenowych, bazujących na DNA czy RNA. Zrozumienie procesu uwalniania szczepionki, który opisaliśmy w naszym artykule, pozwoliło na poradzenie sobie z problemem niestabilności szczepionki, który może pojawić się w czasem, mówi Ana Jaklenec z Koch Institute for Integrative Cancer Research na MIT. Twórcy nowej platformy dodają, że można ją dostosować do podawania innych środków, np. leków onkologicznych czy preparatów używanych w terapii hormonalnej.
      Zespół z MIT już w 2017 roku opisał nową technikę produkcji pustych mikrocząsteczek z PLGA. To biokompatybilny polimer, który jest od dłuższego czasu zatwierdzony do stosowania w implantach, protezach czy niciach chirurgicznych. Technika polega na stworzeniu silikonowych matryc, w którym PLGA nadaje się kształt przypominający filiżanki oraz pokrywki. Następnie „filiżanki” z PLGA można wypełniać odpowiednią substancją, przykryć pokrywką i delikatnie podgrzać, by „filiżanka” i pokrywka się połączyły, zamykając substancję w środku.
      Teraz naukowcy udoskonalili swoją technikę, tworząc wersję, pozwalającą na uproszczoną i bardziej masową produkcję cząsteczek. W artykule opublikowanym na łamach Science Advances opisują, jak dochodzi do degradacji cząsteczek w czasie, co powoduje uwalnianie zawartości „filiżanek” oraz w jaki sposób zwiększyć stabilność szczepionek zamkniętych w cząsteczkach. Chcieliśmy zrozumieć mechanizm tego, co się dzieje oraz w jaki sposób informacja ta pomoże nam na ustabilizowanie szczepionek, mówi Jaklenec.
      Badania pokazały, że PLGA z którego zbudowane są mikrocząsteczki, jest stopniowo rozbijany przez wodę. Materiał staje się stopniowo porowaty i bardzo szybko po pojawieniu się pierwszych porów, rozpada się, uwalniając zawartość „filiżanek”.
      Zrozumieliśmy, że szybkie tworzenie się porów jest kluczowym momentem. Przez długi czas nie obserwujemy tworzenia się porów. I nagle porowatość materiału wzrasta i dochodzi do jego rozpadu, dodaje jeden z badaczy, Morteza Sarmadi. Po tym odkryciu naukowcy zaczęli badać, jak różne elementy, w tym wielkość i kształt cząstek czy skład polimeru, wpływają na formowanie się porów i czas uwalniania zawartości. Okazało się, że kształt i wielkość cząstek nie mają wielkiego wpływu na uwalnianie zawartości. Decydujący okazał się skład polimeru i grupy chemiczne do niego dołączone. Jeśli chcesz, by zawartość „filiżanek” uwolniła się po 6 miesiącach, musisz użyć odpowiedniego polimeru, a jeśli ma się uwolnić po 2 dniach, to trzeba użyć innego polimeru. Widzę tutaj szerokie pole do zastosowań, dodaje Sarmadi.
      Osobnym problemem jest stabilność środka zamkniętego w mikrocząsteczkach. Gdy woda rozbija PLGA produktami ubocznymi tego procesu są m.in. kwas mlekowy i kwas glikolowy, które zakwaszają środowisko. To zaś może doprowadzić do degeneracji leków zamkniętych w cząsteczkach. Dlatego też naukowcy z MIT prowadzą właśnie badania, których celem jest przeciwdziałanie zwiększenia kwasowości przy jednoczesnym zwiększeniu stabilności leków zamkniętych w „filiżankach”. Powstał też specjalny model komputerowy, który oblicza, jak mikrocząsteczka o konkretnej architekturze będzie ulegała rozpadowi w organizmie.
      Korzystając z tego modelu naukowcy stworzyli już szczepionkę na polio, którą testują na zwierzętach. Szczepionkę na polio trzeba podawać od 2 do 4 razy, testy pokażą, czy po jednorazowym podaniu dojdzie do uwolnienia dawek przypominających w odpowiednim czasie.
      Nowa platforma może być też szczególnie przydatna podczas leczenia nowotworów. Przeprowadzone wcześniej testy wykazały, że po jednorazowym wstrzyknięciu w okolice guza, zamknięty w mikrokapsułkach lek został uwolniony w kilkunastu dawkach na przestrzeni kilkunastu miesięcy i doprowadził do zmniejszenia guza i ograniczenia przerzutów u myszy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wirusolodzy od dawna wiedzą o niezwykłym zjawisku dotyczącym wirusów atakujących drogi oddechowe. Dla patogenów tych naturalnym środowiskiem są ciepłe i wilgotne drogi oddechowe. Ich względna wilgotność wynosi zwykle 100%. Wystawienie na bardziej suche powietrze poza organizmem powinno szybko niszczyć wirusy. Jednak wykres czasu ich przeżywalności w powietrzu układa się w literę U.
      Przy wysokiej wilgotności wirus może przetrwać dość długo, gdy wilgotność spada, czas ten ulega skróceniu, ale w pewnym momencie trend się odwraca i wraz ze spadającą wilgotnością powietrza czas przetrwania wirusów... zaczyna się wydłużać.
      Naukowcy od dawna zastanawiali się, dlaczego przeżywalność wirusów zaczyna rosnąć, gdy względna wilgotność powietrza zmniejszy się do 50–80 procent. Odpowiedzią mogą być przejścia fazowe w ośrodku, w którym znajdują się wirusy. Ray Davis i jego koledzy z Trinity University w Teksanie zauważyli, że w bogatych w białka aerozole i krople – a wirusy składają się z białek – w pewnym momencie wraz ze spadkiem wilgotności zachodzą zmiany strukturalne.
      Jedna z dotychczasowych hipotez wyjaśniających kształt wykresu przeżywalności wirusów w powietrzu o zmiennej wilgotności przypisywała ten fenomen zjawisku, w wyniku którego związki nieorganiczne znajdujące się w kropli, w której są wirusy, w miarę odparowywania wody migrują na zewnątrz kropli, krystalizują i tworzą w ten sposób powłokę ochronną wokół wirusów.
      Davis i jego zespół badali aerozole i kropelki złożone z soli i białek, modelowych składników dróg oddechowych. Były one umieszczone na specjalnym podłożu wykorzystywanym do badania możliwości przeżycia patogenów.
      Okazało się, że poniżej 53-procentowej wilgotności krople badanych płynów tworzyły złożone wydłużone kształty. Pod mikroskopem było zaś widać, że doszło do rozdzielenia frakcji płynnej i stałej. Zdaniem naukowców, to dowód na przemianę fazową, podczas której jony wapnia łączą się z proteinami, tworząc żel. Zauważono jednak pewną subtelną różnicę. O ile w aerozolach do przemiany takiej dochodzi w ciągu sekund, dzięki czemu wirusy mogą przeżyć, to w większych kroplach proces ten zachodzi wolnej i zanim dojdzie do chroniącego wirusy przejścia fazowego, patogeny mogą zginąć.
      Naukowcy sądzą, że kluczowym elementem dla zdolności przeżycia wirusów, które wydostały się z dróg oddechowych, jest skład organiczny kropli i aerozoli. Ten zaś może zależeć od choroby i stopnia jej zaawansowania. Następnym etapem prac nad tym zagadnieniem powinno być systematyczne sprawdzenie składu różnych kropli oraz wirusów w nich obecnych, co pozwoli zrozumieć, jak działa proces dezaktywacji wirusów w powietrzu, mówi Davis.
      Zdaniem eksperta od aerozoli, Petera Raynora z University of Minnesota, badania takie można będzie w praktyce wykorzystać np. zapewniając odpowiedni poziom wilgotności powietrza w budynkach w zimie, nie tylko dla komfortu ludzi, ale również po to, by stworzyć najmniej korzystne warunki dla przetrwania wirusów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowa technika szczepienie może zwiększyć produkcję roślinną i wyeliminować wiele chorób wśród najbardziej zagrożonych roślin uprawnych, takich jak bananowce czy palmy daktylowe. Po raz pierwszy udało się zastosować ją u jednoliściennych, grupy, do której należą tak ważne rośliny jak owies czy pszenica.
      Szczepienie roślin stosuje się od tysiącleci w celu uszlachetniania roślin uprawnych i ochrony ich przed chorobami. Zabieg ten polega na połączeniu zrazu – części rośliny szlachetnej – z podkładką, czyli formą dziką. W ten sztuczny sposób łączy się odrębne rośliny i powstaje nowy organizm mający cechy obu.
      Dotychczas jednak szczepienia nie udało się stosować w przypadku roślin jednoliściennych. Nie wytwarzają one bowiem kambium (miazgi twórczej), niezbędnej do tego, by zraz mógł przyjąć się na podkładce.
      Dokonaliśmy czegoś, co dotychczas uznawane było za niemożliwe. Szczepienie roślinnych tkanek zarodkowych niesie ze sobą olbrzymi potencjał. Odkryliśmy, że nawet daleko spokrewnione rośliny nadają się do szczepienia w ten sposób, mówi profesor Julian Hibberd z University of Cambridge. Opisana na łamach Nature technika pozwala na efektywne szczepienie jednoliściennych. Testy wykazały, że w ten sposób można szczepić m.in. ananasy, badany, cebule, agawę i palmę daktylową.
      Czytałem specjalistyczne artykuły dotyczące szczepienia, które ukazały się w ostatnich dekadach, i wszyscy ich autorzy zgodnie twierdzili, że nie można szczepić roślin jednoliściennych. Przez lata uparcie tego próbowałem i w końcu udowodniłem, że badacze się mylili, mówi główny autor odkrycia, doktor Greg Reeves z University of Cambridge. Dzięki pracy Reevesa możliwe będzie stworzenie odmian roślin uprawnych bardziej odpornych na choroby czy zdolnych do wzrostu w na zasolonych glebach.
      Na nowej technice z pewnością skorzystają producenci bananów. Obecnie światowa produkcja jest zdominowana przez odmianę Cavendish, gdyż owoce te dobrze znoszą transport długodystansowy. Jednak brak zróżnicowania genetycznego powoduje, że uprawy bananów na całym świecie są narażone na choroby. Od dziesięcioleci uprawom bananów na całym świecie zagraża grzybiczna choroba panamska. Prace naukowców z University of Cambridge dają nadzieję na ocalenie tego ważnego źródła pożywienia. To wspaniała wiadomość, mówi doktor Louise Sutherland z Ceres Agri-Tech.
      Procedury szczepienia nie uda się jednak zastosować w rozsądny sposób w przypadku wszystkich jednoliściennych, w tym bardzo ważnych zbóż, jak pszenica czy owies. W ich przypadku trzeba by ją powtórzyć miliony razy, by uzyskać pojedynczy zbiór. Jednak nowa technika znajdzie zastosowanie w przypadku dużych długo żyjących roślin, jak bananowce, palmy daktylowe czy agawa. W ich przypadku szczepienie pojedynczych roślin ma sens.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjalistki z Międzyuczelnianego Wydziału Biotechnologii Uniwersytetu Gdańskiego i Gdańskiego Uniwersytetu Medycznego - prof. Krystyna Bieńkowska-Szewczyk, dr Katarzyna Grzyb i mgr Anna Czarnota - pracują nad szczepionką przeciw zakażeniom spowodowanym wirusami zapalenia wątroby typu C i B (HCV i HBV). Urząd wydał już decyzję o przyznaniu patentu na ich wynalazek ("Chimeryczne cząsteczki wirusopodobne eksponujące sekwencje antygenowe wirusa HCV do zastosowania w leczeniu prewencyjnym zakażenia wirusem HCV i/lub HBV").
      Szczepionka na wagę złota
      HCV stanowi poważny problem medyczny. Wg Głównego Inspektoratu Sanitarnego (GIS), szacuje się, że co roku 1,4 mln zgonów jest spowodowanych odległymi następstwami przewlekłych zakażeń wirusami wywołującymi wirusowe zapalenie wątroby B lub C (marskość, rak wątrobowokomórkowy). WZW C [wirusowe zapalenie wątroby typu C] jest główną przyczyną raka wątroby w Europie i USA. W tych regionach świata WZW C jest najczęstszym powodem dokonywania przeszczepów wątroby.
      Niestety, mimo badań nie ma jeszcze skutecznej szczepionki. Główną przeszkodą jest duża zmienność genetyczna HCV. Z tego powodu idealna szczepionka powinna wzbudzać odpowiedź immunologiczną przeciw najbardziej konserwowanym fragmentom białek wirusowych.
      Gdański wynalazek
      Wynalazek dotyczy rekombinowanych cząstek wirusopodobnych eksponujących na swojej powierzchni wybrane sekwencje antygenowe pochodzące z wirusa zapalenia wątroby typu C do zastosowania jako immunogenna szczepionka przeciwko zakażeniom spowodowanym wirusami zapalenia wątroby typu C i/lub B – wyjaśnia prof. Bieńkowska-Szewczyk.
      Wynalazek powstał w ramach realizacji projektu NCN Preludium 12. Jego szczegóły opisano w pracy eksperymentalnej pt. "Specific antibodies induced by immunization with hepatitis B virus-like particles carrying hepatitis C virus envelope glycoprotein 2 epitopes show differential neutralization efficiency".
      Dr Grzyb tłumaczy, że cząstki wirusopodobne cieszą się obecnie dużym zainteresowaniem, gdyż są bardzo podobne do wirusów, stąd też wynika ich wysoka immunogenność. Nie są jednak wirusami, bo nie zawierają materiału genetycznego wirusa, a tym samym nie mają zdolności do namnażania.
      Zdolność tworzenia cząstek wirusopodobnych ma małe białko powierzchniowe wirusa zapalenia wątroby typu B (ang. hepatitis B virus small surface protein, sHBsAg). sHBsAg jest wykorzystywane w szczepionkach chroniących przed zakażeniem wirusem zapalenia wątroby typu B. Jak wyjaśniono w opisie projektu na stronie Narodowego Centrum Nauki, ze względu na obecność w strukturze białka sHBsAg silnie immunogennej, hydrofilowej pętli dobrze tolerującej insercje nawet dużych fragmentów obcych białek, sHBsAg było wielokrotnie proponowane jako nośnik obcych antygenów.
      W naszym wynalazku wyeksponowanie silnie konserwowanych fragmentów białek wirusa HCV na powierzchni cząstek wirusopodobnych opartych na białku sHBsAg [w hydrofilową pętlę  białka sHBsAg wstawiono silnie konserwowane sekwencje glikoproteiny E2 wirusa HCV] pozwoliło na stworzenie biwalentnych immunogenów wzbudzających odpowiedź zarówno przeciwko wirusowi HCV, jak i HBV. W przyszłości nasze rozwiązanie mogłoby być wykorzystane jako skuteczna szczepionka nowej generacji chroniąca przed zakażeniem tymi groźnymi patogenami - podsumowuje mgr Anna Czarnota.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na ospę prawdziwą, jedną z najbardziej śmiercionośnych i najdłużej trapiących ludzkość chorób, nie zapada obecnie nikt. Ostatnie znane przypadki naturalnej infekcji miały miejsce w 1977 roku w Somalii. Natomiast ostatnimi ofiarami ospy było dwoje Brytyjczyków. W 1978 roku fotograf medyczna Janet Parker zaraziła się ospą na University of Birmingham. Obwiniany o jej chorobę profesor Henry Bedson, który prowadził badania nad wirusem ospy, popełnił samobójstwo. Oboje zmarli w tym samym dniu.
      W 1980 roku WHO ogłosiła, że świat jest wolny od ospy prawdziwej. To jak dotychczas jedyny przypadek w historii, kiedy dzięki świadomemu wysiłkowi ludzkości udało się zlikwidować (eradykować) chorobę zakaźną trapiącą ludzi. Inną taką chorobą zakaźną jest księgosusz (pomór bydła), ogłoszony chorobą eradykowaną w 2010 roku.
      Jak to się jednak stało, że istniejąca od tysiącleci ospa prawdziwa, która w samym tylko XX wieku zabiła 300 milionów osób przestała stanowić zagrożenie? Odpowiedzią są szczepienia. To właśnie dzięki nim i ogłoszonemu w 1967 roku programowi  jej eradykacji nie musimy obawiać się tej śmiercionośnej choroby.
      Nieco historii
      Ludzkość od dawna wiedziała, że jeśli komuś udało się przeżyć ospę – a nie było to takie pewne, gdyż np. w XVIII wieku zabijała ona 20–60 procent zarażonych – stawał się odporny na kolejną infekcję. Wiedzę tę wykorzystywano w praktyce. Już w 430 roku p.n.e. ozdrowieńcy byli wzywani do opieki nad chorymi.
      Pojawiła się koncepcja inokulacji. To celowe wprowadzanie do organizmu, np. poprzez nacięcie na skórze, wydzielin osoby chorej, ale chorującej w stopniu łagodnym. Alternatywnym sposobem było sproszkowanie strupów ofiary ospy i wdmuchnięcie ich do nosa osoby zdrowej. Takie działania powodowały, że człowiek co prawda chorował, ale zwykle przechodził chorobę łagodniej. Jedynie około 2% inokulowanych osób rozwijało poważną infekcję i umierało czy stanowiło zagrożenie dla innych. Ryzyko było więc wyraźnie mniejsze.
      Pod koniec XVIII wieku Edward Jenner, angielski lekarz, który sam jako dziecko był inokulowany, zaczął zastanawiać się, jak to się dzieje, że kobiety zajmujące się zawodowo dojeniem krów, nie chorują i nie umierają na ospę. Wszystko wskazywało na to, że mają one kontakt z łagodną dla człowieka ospą krową (krowianką), i gdy się nią zarażą, są chronione przed śmiertelną ospą prawdziwą. Jenner postanowił przetestować tę koncepcję. W 1796 roku materiałem pobranym od kobiety zarażonej krowianką inokulował 8-letniego chłopca, a kilka tygodni później inokulował go materiałem od osoby chorującej na ospę. U chłopca nie pojawiły się żadne oznaki choroby. Kolejne eksperymenty wykazały, że taka procedura jest znacznie bardziej bezpieczna od standardowej inokulacji. Tym samym Jenner zapoczątkował epokę szczepień, wprowadzania do organizmu zdrowego człowieka znacznie słabiej działającego patogenu, który uodparnia nas na działanie zjadliwego, niebezpiecznego patogenu.
      Są szczepionki, są i antyszczepionkowcy
      Metoda Jennera szybko zdobywała popularność zarówno wśród elit jak i zwykłych obywateli. Jenner nazwał całą procedurę vaccination (szczepienie) od łacińskiego vacca (krowa) i vaccinia (krowianka). Jednak już kilka lat później pojawili się pierwsi antyszczepionkowcy. Sceptycyzm wobec metody Jennera wynikał głównie z nieufności i niewiedzy. Do metody Jennera podchodzono bowiem nieufnie na tych terenach, gdzie krowianka nie występowała, ludzie nie znali więc ochronnych skutków infekcji tą chorobą.
      Opublikowano książeczkę, w której krowiankę przedstawiano jako niebezpieczną chorobę i opisywano rzekome przypadki zarażenia ludzi „krowim syfilisem” w wyniku szczepień. Po publikacji zaczęły pojawiać się informacje o kolejnych przypadkach „krowiego syfilisu”, których to autor książeczki nie omieszkał umieścić w kolejnym wydaniu. Ostrzegał też, że szczepienie to eksperyment medyczny, prowadzony bez odpowiedniego rozwagi.
      Kolejny tego typu tekst został opublikowany pod pseudonimem „R. Squirrel, doktor medycyny” przez aptekarza i politycznego radykała Johna Gale'a Johnesa. Twierdził on, że wcześniej prowadzona inokulacja była w pełni bezpieczna, a Jenner tak naprawdę zaraża ludzi skrofulozą (gruźlicą węzłów chłonnych). W jeszcze innym dziele opisano przypadki trzech pacjentów, którzy zmarli w wyniku sepsy po szczepieniu – co nie może dziwić biorąc pod uwagę ówczesny poziom higieny – oraz dziecka, u którego rok po szczepieniu pojawiły się na czole wielkie purpurowe bulwy. W jeszcze innych dziełach czytamy o świerzbie wywołanym rzekomo przez szczepienie, a całość zilustrowano rysunkiem chłopca, którego twarz zamieniła się w twarz wołu. Oczywiście w wyniku szczepienia.
      Kukułką w szczepienia
      Antyszczepionkowcy nie ograniczyli się jednak tylko do tego, Przez ponad 100 lat, walcząc z koncepcją Jennera, używali przykładu... kukułki. Otóż w 1788 roku Jenner opublikował wyniki swoich badań nad kukułkami, w których stwierdził, ze młode, wyklute z jaja podrzuconego przez kukułkę innemu gatunkowi, wyrzuca z gniazda młode tego gatunku. Wielu przyrodników uznało tę koncepcję za absurdalną. I antyszczepionkowcy przez dekady wykorzystywali opinię tych przyrodników, by zdyskredytować osiągnięcia Jennera na polu szczepień. W końcu w 1921 roku, dzięki wykorzystaniu fotografii potwierdzono, że Jenner miał rację co do kukułek. Podobnie zresztą, jak miał rację odnośnie szczepień.
      Jak więc działają szczepionki?
      Nasz układ odpornościowy możemy podzielić na dwie zasadnicze części: wrodzoną (nieswoistą) oraz adaptacyjną (swoista). Z odpornością wrodzoną się rodzimy. Otrzymujemy ją po matce i stanowi on pierwszą linię obrony naszego organizmu. Układ odpornościowy atakuje wszystko, co uzna za obce. Odpowiedź nieswoista następuje natychmiast, a do akcji wkraczają granulocyty, makrofagi czy monocyty. Jednak nie jest to reakcja zbyt precyzyjna i nie zawsze w jej wyniku patogeny zostaną usunięte. Co więcej, ten rodzaj reakcji nie wytwarza pamięci immunologicznej.
      Do tego, by organizm zapamiętał dany patogen potrzebna jest bardziej wyspecjalizowana odpowiedź swoista, kiedy to organizm wytwarza przeciwciała zwalczające konkretne zagrożenie. To bardziej precyzyjne uderzenie w patogen, jednak od momentu infekcji do pojawienia się skutecznej odpowiedzi swoistej musi minąć nieco czasu. Gdy już jednak układ odpornościowy wytworzy odpowiedź swoistą i zwalczy patogen, zapamiętuje go i przy kolejnej infekcji szybko przystępuje do działania, wyposażony już w specjalistyczne narzędzia do walki z konkretnym wirusem czy bakterią.
      Patogeny, czy to wirusy, bakterie, grzyby czy pasożyty, składają się z wielu różnych części, które często są charakterystyczne zarówno dla nich, jak i wywoływanych chorób. Takie części, które prowokują organizm do wytworzenia przeciwciał nazywa się antygenami. Gdy układ odpornościowy po raz pierwszy napotyka na antygen, potrzebuje nieco czasu, by wytworzyć przeciwciała. Jednak gdy już je uzyska, produkuje też specyficzne dla nich komórki pamięci. Komórki te pozostają w organizmie nawet po zwalczeniu patogenu. Dlatego też gdy zetkniemy się z nim po raz kolejny, nasz układ odpornościowy szybko przystępuje do ataku.
      Szczepienia zaś mają służyć wcześniejszemu nauczeniu układu odpornościowego rozpoznawania patogenu, bez potrzeby czekania na tę pierwszą infekcję, która może przecież okazać się bardzo niebezpieczna. Dzięki nim nasz układ odpornościowy uczy się bowiem, jak rozpoznać napastnika i gdy zetknie się z nim powtórnie, szybciej i łatwiej sobie z nim poradzi. Wszystkie szczepionki działają poprzez wcześniejsze – bezpieczne i kontrolowane – wystawienie organizmu na kontakt z patogenem lub jego fragmentem po to, by w przypadku ponownego kontaktu, układ odpornościowy był przygotowany do zwalczania wirusa lub bakterii.
      Rodzaje szczepionek
      Obecnie nikt nie wdmuchuje nam do nosa sproszkowanych strupów i nie nacina nam skóry, by wprowadzić materiał pobrany od chorej osoby. Stosowane są znacznie skuteczniejsze i bezpieczniejsze metody.
      Jedną z nich są szczepionki z żywym, atenuowanym wirusem lub bakterią. Zawierają one atenuowany czyli osłabiony patogen, który nie stanowi zagrożenia dla osób o prawidłowo działającym układzie odpornościowym. Jako, że takie patogeny są najbliższe temu, z czym możemy się zetknąć, szczepionki tego typu są świetnymi nauczycielami dla układu odpornościowego. W ten sposób szczepi się na odrę, świnkę czy różyczkę. To bardzo efektywny sposób zabezpieczenia przed chorobami. Jednak ze względu na to, że mimo wszystko mamy tutaj do czynienia z żywym patogenem, lepiej dmuchać na zimne. Szczepionek takich nie podaje się więc osobom o osłabionym układzie odpornościowym czy kobietom w ciąży.
      Istnieją również szczepionki z inaktywowanym, zabitym, patogenem. Nie są one jednak tak skuteczne, jak szczepionki z patogenem żywym, dlatego zwykle wymagają podania kilku dawek. Za przykład mogą tutaj służyć szczepionki przeciwko polio czy wściekliźnie.
      Dwa wymienione tutaj rodzaje to starsze typy szczepionek. Nowsze rodzaje zawierają nie całe patogeny, a ich fragmenty, antygeny. Szczepionki takie są bardziej jednorodne, podobne do siebie, niż szczepionki z patogenami. Są w wyższym stopniu powtarzalne i powodują mniej działań niepożądanych. Jednak zwykle też wywołują słabszą odpowiedź układu odpornościowego, niż szczepionki zawierające całe bakterie czy wirusy.
      Najnowszym rodzajem szczepionek, o których wszyscy usłyszeliśmy przy okazji pandemii COVID-19, są szczepionki wektorowe i mRNA. Oba rodzaje nie zawierają ani patogenu, ani jego antygenu. Zawierają zaś instrukcję, w jaki sposób nasz organizm ma sobie taki antygen samodzielnie wyprodukować.
      W szczepionkach wektorowych nośnikiem instrukcji – wektorem – jest zmodyfikowany wirus, pozbawiony genów powodujących chorobę oraz pozbawiony genów umożliwiającym mu namnażanie się. Do genomu tego nieszkodliwego wirusa wprowadzana jest dodatkowo instrukcja produkcji antygenu drobnoustroju, przed którym chcemy się chronić. Zatem, w przeciwieństwie do prawdziwej infekcji, do organizmu nie trafia pełny materiał genetyczny wirusa, a jego fragment. Nie ma zatem możliwości, by nasze komórki wyprodukowały wirusa. To, co się dzieje po szczepieniu, bardzo przypomina prawdziwą infekcję.
      Wektor wnika do komórek i wprowadza genetyczną instrukcję produkcji antygenu do jądra komórek naszego organizmu. Jako, że nasz wektor pozbawiony jest możliwości namnażania się, nie rozprzestrzenia się po organizmie. Ponadto co prawda jego DNA jest wprowadzane do jądra komórkowego, ale nie jest włączane do naszego genomu i nie replikuje się w kolejnych cyklach komórkowych. Na podstawie tego DNA powstaje RNA, które przemieszcza się z jądra komórkowego do cytoplazmy, tam staje się matrycą do produkcji antygenu. Ten zaś jest prezentowany na powierzchni „zakażonej” komórki. Układ odpornościowy rozpoznaje wrogi antygen, zwalcza go, zabijając komórkę i jednocześnie zapamiętuje antygen. Następnym razem będzie gotowy by szybko zaatakować wirusa. Zarówno ekspresja genów wirusa, jak i odpowiedź immunologiczna są krótkotrwałe i ograniczone do miejsca wstrzyknięcia szczepionki. To jednak wystarczy, by układ odpornościowy zapamiętał wroga na przyszłość.
      Szczepionki wektorowe mają zarówno wady, jak i zalety. Wywołują silną odpowiedź immunologiczną, na której nam zależy, a technologia ich produkcji jest dobrze opanowana. Jeśli jednak organizm już wcześniej zetknął się z wirusem użytym w roli wektora, to może szybko zacząć go zwalczać, przez co skuteczność szczepionki będzie niższa. Ponadto produkcja takich szczepionek jest dość skomplikowana.
      Powyższy problem rozwiązują szczepionki mRNA. Ich zastosowanie polega na wstrzyknięciu do organizmu wolnego (tj. niezwiązanego z nośnikiem, np. wirusem) materiału genetycznego w formie mRNA, który jest następnie pobierany przez komórki i poddawany ekspresji.
      Po wniknięciu do organizmu mRNA ze szczepionki jest przetwarzane przez organizm tak samo, jak „własne” mRNA z naszych komórek, tzn. na podstawie zawartej w nim instrukcji wytwarzane jest białko o ściśle określonej budowie, symulującej immunologiczną „sygnaturę” danego patogenu. Białko takie jest wykrywane przez układ immunologiczny jako obce i powoduje wytworzenie odpowiedzi oraz pamięci immunologicznej. Dzięki temu kiedy kolejny raz dojdzie do kontaktu z takim samym antygenem (tym razem na powierzchni wirusa z „prawdziwej” infekcji), reakcja będzie szybka i skuteczna – tak bardzo, że często nawet nie będziemy świadomi, że organizm właśnie zwalczył śmiertelne zagrożenie.
      Takie RNA w ogóle nie wnika do jądra komórkowego, zatem nie ma możliwości włączenia się do DNA naszych komórek ani replikacji. Prowadzi ono wyłącznie do wytworzenia antygenów, po czym ulega degradacji. Również i tutaj mamy do czynienia z krótkotrwałą obecnością w naszym organizmie materiału genetycznego wirusa, a jego pozostałości są w naturalny sposób szybko usuwane. Pozostaje nam po nim jedynie pamięć układu odpornościowego, przygotowanego dzięki szczepionkom na reakcję w przypadku prawdziwej infekcji.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...