Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Prototypowy wyświetlacz z kwantowych kropek

Rekomendowane odpowiedzi

Firma QD Vision zaprezentowała technologię produkcji wyświetlaczy z kwantowych kropek. Została ona opracowana na podstawie wynalezionej w MIT (Massachusetts Institute of Technology) technologii nadrukowywania kwantowych kropek.

Wyświetlacze, które powstaną dzięki nowej technice będą znacznie większe i dadzą obraz o lepszej jakości niż monitory OLED. Mają być za to od nich tańsze w produkcji.

Prototypowy wyświetlacz QD Vision zbudowany był z matrycy o wymiarach 32 na 64 kropki, które nadrukowano na półprzewodnik. Po podłączeniu napięcia kropki emitowały światło. Same kwantowe kropki to nanokryształy o średnicy 5 nanometrów, zbudowane z nieogranicznego półprzewodnika.

Szczegóły zastosowanej technologii zostaną przedstawione w październiku, a sama technologia ma zostać zaprezentowana podczas konferencji Society of Information Displays w maju przyszłego roku.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na MIT powstały ogniwa fotowoltaiczne cieńsze od ludzkiego włosa, które na kilogram własnej masy wytwarzają 18-krotnie więcej energii niż ogniwa ze szkła i krzemu. Jeśli uda się skalować tę technologię, może mieć do olbrzymi wpływ produkcję energii w wielu krajach. Jak zwraca uwagę profesor Vladimir Bulivić z MIT, w USA są setki tysięcy magazynów o olbrzymiej powierzchni dachów, jednak to lekkie konstrukcje, które nie wytrzymałyby obciążenia współczesnymi ogniwami. Jeśli będziemy mieli lekkie ogniwa, te dachy można by bardzo szybko wykorzystać do produkcji energii, mówi uczony. Jego zdaniem, pewnego dnia będzie można kupić ogniwa w rolce i rozwinąć je na dachu jak dywan.
      Cienkimi ogniwami fotowoltaicznymi można by również pokrywać żagle jednostek pływających, namioty, skrzydła dronów. Będą one szczególnie przydatne w oddalonych od ludzkich siedzib terenach oraz podczas akcji ratunkowych.
      To właśnie duża masa jest jedną z przyczyn ograniczających zastosowanie ogniw fotowoltaicznych. Obecnie istnieją cienkie ogniwa, ale muszą być one montowane na szkle. Dlatego wielu naukowców pracuje nad cienkimi, lekkimi i elastycznymi ogniwami, które można będzie nanosić na dowolną powierzchnię.
      Naukowcy z MIT pokryli plastik warstwą parylenu. To izolujący polimer, chroniący przed wilgocią i korozją chemiczną. Na wierzchu za pomocą tuszów o różnym składzie nałożyli warstwy ogniw słonecznych i grubości 2-3 mikrometrów. W warstwie konwertującej światło w elektryczność wykorzystali organiczny półprzewodnik. Elektrody zbudowali ze srebrnych nanokabli i przewodzącego polimeru. Profesor Bulović mówi, że można by użyć perowskitów, które zapewniają większą wydajność ogniwa, ale ulegają degradacji pod wpływem wilgoci i tlenu. Następnie krawędzie tak przygotowanego ogniwa pomarowano klejem i nałożono na komercyjnie dostępną wytrzymałą tkaninę. Następnie plastik oderwano od tkaniny, a na tkaninie pozostały naniesione ogniwa. Całość waży 0,1 kg/m2, a gęstość mocy tak przygotowanego ogniwa wynosi 370 W/kg. Profesor Bulović zapewnia, że proces produkcji można z łatwością skalować.
      Teraz naukowcy z MIT planują przeprowadzenie intensywnych testów oraz opracowanie warstwy ochronnej, która zapewni pracę ogniw przez lata. Zdaniem uczonego już w tej chwili takie ogniwo mogłoby pracować co najmniej 1 lub 2 lata. Po zastosowaniu warstwy ochronnej wytrzyma 5 do 10 lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Każdy, kto myśli nad zakupem nowego telewizora, prędzej czy później spotka się ze sformułowaniem „technologia OLED”. Zwykle te telewizory są nieco droższe niż inne, co może rodzić pytanie, na czym właściwie polega unikatowość tego rozwiązania. Czy warto dopłacać? Pora przyjrzeć się, czym właściwie jest technologia OLED i dlaczego postawienie na nią to bardzo dobry pomysł!
      OLED - co to właściwie znaczy? Nazwa OLED wzięła się od Organic LED i oznacza wyświetlacze, których diody powstały ze związków organicznych. Ma to szereg konsekwencji dla ich działania, a co za tym idzie - wrażeń wizualnych podczas korzystania ze sprzętu.
      W praktyce oznacza to, że każdy piksel w wyświetlaczu działa oddzielnie, bo panel LED nie potrzebuje dodatkowego podświetlenia. Na co się to przekłada? Na nieskończony kontrast i doskonałą czerń - to dwa elementy, które mocno przemawiają na korzyść technologii OLED.
      Nie są to jednak wszystkie jej zalety! Warto podkreślić, że oprócz żywych kolorów i wyjątkowej głębi czerni, technologia OLED oznacza również:
      krótki czas reakcji - co ma znaczenie głównie dla graczy, szeroką paletę barw - przejścia tonalne i detale są świetnie widoczne, brak degradacji kolorów - nawet wtedy, gdy patrzymy na obraz pod kątem, brak zniekształceń obrazu. To mocne argumenty za tym, by wybrać telewizor z OLED. Do tego należy dodać, że sprzęty takie są smukłe, eleganckie, zwykle świetnie zaprojektowane. Atrakcyjnie prezentują się więc na ścianie w salonie.
      OLED - dlaczego warto? Telewizory z OLED przypadną do gustu wielu typom odbiorców. Są jednak grupy, których szczególnie może satysfakcjonować korzystanie z takiej technologii.
      Kto znajdzie się w tym gronie?
      Gracze - superszybki czas reakcji oznacza, że mogą liczyć na doskonałe wrażenia wizualne. Miłośnicy kina - doskonała czerń sprawia, że przy zgaszonym świetle, telewizor zlewa się z otoczeniem, przez co w domu możemy poczuć się tak, jak w kinie. Fani sportu - dynamiczne transmisje sportowe będę prezentować się doskonale na takim telewizorze. Wszystko dzięki zachowaniu najdrobniejszych detali. To zdecydowanie technologia dla wymagających, jednak korzyści z niej wynikające są na tyle duże, że warto szukać sprzętów z OLED.
      Telewizor z OLED - jaki wybrać? Na rynku znajdziemy sporo modeli telewizorów OLED od czołowych producentów sprzętu RTV. Który wybrać? Pora przyjrzeć się bliżej najciekawszym rozwiązaniom.
      Telewizor LG OLED55C11LB - 55-calowy telewizor, który kupimy w cenie poniżej 5000 zł. Rozdzielczość 4k i technologia OLED zapewnią doskonałe wrażenia wizualne. Producent podkreśla, że ekrany LG OLED odznaczają się 100% wiernością reprodukcji barw. Sprzęt ten wyróżnia się doskonałym designem i smukłą konstrukcją. Telewizor PHILIPS 65OLED856/12 - model o przekątnej 65 cali. Podobnie jak poprzedni omawiany telewizor, oferuje obraz w 4k. Tym, co go wyróżnia, jest 4-stronna technologia Ambilight, zapewniająca wyjątkowe doznania. Inteligentne diody LED na ramie telewizora reagują na akcję na ekranie, emitując poświatę, która sprawia, że to, co oglądamy, wychodzi z zamkniętych ram i przenosi się do przestrzeni wokół. Telewizor działa w oparciu o Android TV. Telewizor OLED SONY XR-65A90J - to najdroższy z proponowanych modeli, bo kosztuje ponad 10 000 zł. 65 cali, 4k, a także wiele zaawansowanych technologii poprawiających komfort oglądania. Oprócz doznań wizualnych, możemy liczyć na doskonały dźwięk - wszystko dzięki ekranowi, będącemu jednocześnie głośnikiem oraz najnowszemu procesorowi XR. Spośród bardzo wielu innowacyjnych rozwiązań, warto wymienić choćby Sony Cognitive Processor XR, który kompleksowo analizuje dane i ulepsza te cechy obrazu, na których skupia się ludzkie oko. Telewizory OLED w sklepie MediaMarkt można kupić już za nieco powyżej 4000 zł. Są też propozycje dla najbardziej wymagających, których cena opiewa na więcej niż 20 000 zł. Znając swój budżet, dobrze porównać opisy i specyfikacje produktów, by wybrać ten, który odpowiada nam najbardziej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W nowym wyświetlaczu OLED, którego autorami są specjaliści z Samsunga i Uniwersytetu Stanforda, upakowano niemal 10 000 pikseli na cal. Prace te mogą doprowadzić do powstania zaawansowanych wyświetlaczy do rzeczywistości wirtualnej i rzeczywistości rozszerzonej.
      Wyświetlacz OLED składa się z warstw organicznych podzespołów, które emitują światło w reakcji na przepływ prądu. W komercyjnych dużych telewizorach OLED osiągana jest obecnie rozdzielczość 100-200 pikseli na cal (PPI), podczas gdy w wyświetlaczach telefonów udaje się osiągnąć 400-500 PPI.
      Na skalę przemysłową produkuje się dwa rodzaje wyświetlaczy OLED. W urządzeniach przenośnych wykorzystywane są czerwone, zielone i niebieskie organiczne LED (OLED). Używana jest tutaj także metalowa powłoka, której grubość decyduje o wielkości diod, natomiast tendencja metalu do wybrzuszania się ogranicza wielkość wyświetlacza. W dużych wyświetlaczach OLED, stosowanych w telewizorach, mamy zaś białe diody i umieszczone nad nimi kolorowe filtry. W tym przypadku filtry ograniczają możliwość zmniejszania diod decydując w ten sposób o tym ile ich można rozmieścić, a zatem o rozdzielczości.
      Nowy wyświetlacz ma całkowicie odmienną budowę. Użyto tam warstwy OLED emitującej białe światło. Jest ona zamknięta pomiędzy dwiema odbijającymi światło warstwami. Jedna z nich jest srebrna, druga zaś to „metapowierzchnia” założona z dużej liczby mikroskopijnych srebrnych pręcików. Odległości pomiędzy tymi pręcikami są mniejsze niż długość fali światła. Srebrne pręciki mają wysokość 80 nm, a ich szerokość wynosi 100 nm. Są one zorganizowane w klastry, z których każdy reprezentuje 1 piksel. szerokość takiego klastra wynosi 2,4 mikrometra, czyli na calu zmieści się ich około 10 000.
      Każdy piksel metapowierzchni nowego wyświetlacza podzielony jest na cztery subpiksele o jednakowych rozmiarach. Światło pada na pręciki i się od nich odbija. A o tym, jaki kolor ma światło odbite od każdego z pręcików decyduje odległość pomiędzy pręcikami. Tam, gdzie pręciki są najgęściej upakowane uzyskamy kolor czerwony, zielony podchodzi od pręcików umiarkowanie upakowanych, a niebieski uzyskuje się tam, gdzie między pręcikami są największe odległości.
      Światło wlelokrotnie odbija się pomiędzy warstwami, a w końcu z nich ucieka. Jak mówią badacze, dzięki takiej interakcji światła z materiałami wyświetlacza uzyskano też dwukrotnie większą jasność w porównaniu ze standardowymi OLED wykorzystującymi filtry oraz wyższą czystość kolorów. Inżynier Mark Brongersma ze Stanford University porównuje to do pudła rezonansowego instrumentów, które pozwala im na uzyskanie pięknego czystego dźwięku. To samo dzieje się tutaj ze światłem. Różne jego kolory rezonują z pikselami.
      Główny autor badań, Won-Jae Joo z Samsung Advanced Institute of Technology mówi, że teoretyczny limit rozdzielczości takiego wyświetlacza to około 20 000 pikseli na cal. Problemem jest tutaj spadek jasności, do jakiego dochodzi, gdy pojedynczy piksel ma wymiary mniejsze niż mikrometr.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      LED, OLED, a może QLED. Przekonaj się, jaka technologia najlepiej sprawdzi się w Twoim domu.
      LED, OLED, QLED - czym się różnią?
      To najpopularniejsze typy technologii, z jakimi możesz się teraz spotkać.
      Najbardziej znany, bo też najstarszy, jest LED. Telewizory LED mają ciekłokrystaliczne ekrany z wbudowanymi diodami LED. Zazwyczaj są dużo tańsze od pozostałych typów telewizorów. Ich zaletą jest zdecydowanie to, że są dostępne w największej rozpiętości rozmiarów. Minusy to częste, zwłaszcza przy słabszych typach telewizorów, zniekształcanie obrazów oraz rozmazywanie się obrazu w widzeniu kątowym.
      Telewizory OLED mają natomiast matrycę stworzoną z diod z polifenylenowinylenu. Gwarantuje to większą szerokość kątów widzenia niż w przypadku telewizorów LED. Minusem zdecydowanie jest wyższa cena i możliwość wypalania się obrazu. Plusów jest jednak znacznie więcej. To bardzo dobra jakość obrazu oraz wysoki kontrast. Ekran w telewizorach OLED szybciej reaguje też na zmiany.
      Telewizory QLED to najmłodszy, ale też najbardziej zaawansowany typ telewizorów. To nazwa firmowa zarezerwowana przez Samsung. W przypadku tych telewizorów wykorzystywane jest podświetlenie LED, nie OLED, oraz kropki kwantowe. Taki „tuning” dobrze znanej i sprawdzonej technologii pozwala uzyskać jeszcze bardziej żywy i nasycony obraz. Technologia QLED 2020 zapewnia jednak także bardzo naturalne kolory. Nawet gdy wybierzesz mały telewizor Samsung qled 55 cali, obraz będzie bardzo dokładny.
      OLED a QLED - który jest lepszy
      Technologia OLED na pewno spodoba się wielbicielom głębokich kontrastów. Niektóre telewizory mogą mieć też szerszy kąt widzenia, ale idzie za tym też pewien minus, czyli wyświetlanie statycznych elementów przez dłuższy czas na ekranie. Technologia QLED a dokładniej najnowsza QLED 2020, ma wyższą jasność. Kto to doceni? Na pewno wszystkie osoby, które mają umieszczony telewizor w bardzo jasnym, nasłonecznionym pomieszczeniu. Telewizory Samsung QLED 2020, podobnie jak OLED, zazwyczaj są dostępne w dużych rozmiarach i właśnie przy większych gabarytach QLED może stać się dla Ciebie niekwestionowanym zwycięzcą. Cena telewizorów w tej technologii jest zazwyczaj o wiele niższa, niż konkurencyjnych o tej samej przekątnej. Znajdziesz tu jednak także klasyczne małe rozmiary, jak Samsung QLED 55 cali.
      Rozmiar telewizora - dobierz idealny do pomieszczenia
      Niezależnie od tego, czy wybierasz telewizor w technologii LED, OLED czy Samsung QLED 2020, na komfort oglądania będą miały też wpływ odpowiednio dopasowane wymiary telewizora do pomieszczenia. Za mały telewizor do Twojej odległości, podobnie jak zbyt duży, może negatywnie wpłynąć na jakość Twojego doświadczenia. Ogólnie zakłada się, że jeśli na przykład Twoja kanapa znajduje się w odległości mniejszej niż 2,5 metra od telewizora, wtedy nie może być on zbyt duży. Najlepiej wybierz wtedy telewizor 55 calowy, na przykład telewizor Samsung 55 cali qled lub innej marki. Jeśli siedzisz natomiast już ponad 3,5 metra od niego, możesz sobie pozwolić na telewizor nawet 85-calowy. Jest to jednak jeszcze uzależnione od technologii HD. W przypadku FULL HD telewizor LED czy telewizor QLED 55 cali powinien znajdować się maksymalnie 3,2 m od Ciebie. Parametry te zmieniają się w przypadku technologii 4K, czyli wyższej niż FULL HD. Tutaj w związku z większą liczbą pikseli na cal, możesz z bliższej odległości komfortowo oglądać na większej matrycy. Zakłada się, że telewizor w 4K może być nawet dwukrotnie większy od tego w technologii FULL HD. Dlatego planowany telewizor qled 55 cali można zastąpić wtedy telewizorem qled o przekątnej nawet ok. 80 cali.
      Rozdzielczość 8K - nowość 2020
      Jeśli jesteś tv maniakiem i zależy Ci na jak najlepszych i najbardziej luksusowych przeżyciach podczas oglądania filmów czy telewizji, zainteresuj się technologią 8K.
      Odsyła ona 4K w zapomnienie. Dzięki 33 milionom pikseli na ekranie, każdy detal jest niezwykle wyraźny. Obraz jest tak naturalny, że tworzy zupełnie nową jakość widzianych już wcześniej materiałów. I to nawet jeśli oglądasz je na największym ekranie. Czyli generalnie swoje ulubione filmy musisz obejrzeć jeszcze raz, żeby odkryć je w zupełnie nowej jakości. Telewizor z taką rozdzielczością warto jednak przede wszystkim kupić w większych rozmiarach. Telewizor samsung 55 cali qled byłby po prostu za mały. Minimalna przekątna powinna wynosić to 65-75 cali.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z MIT opracowali kwantowy „ściskacz światła”, który redukuje szum kwantowy w laserach o 15%. To pierwszy taki system, który pracuje w temperaturze pokojowej. Dzięki temu możliwe będzie wyprodukowanie niewielkich przenośnych systemów, które będzie można dobudowywać do zestawów eksperymentalnych i przeprowadzać niezwykle precyzyjne pomiary laserowe tam, gdzie szum kwantowy jest obecnie poważnym ograniczeniem.
      Sercem nowego urządzenia jest niewielka wnęka optyczna znajdująca się w komorze próżniowej. We wnęce umieszczono dwa lustra, z których średnia jednego jest mniejsza niż średnica ludzkiego włosa. Większe lustro jest zamontowane na sztywno, mniejsze zaś znajduje się na ruchomym wsporniku przypominającym sprężynę. I to właśnie kształt i budowa tego drugiego, nanomechanicznego, lustra jest kluczem do pracy całości w temperaturze pokojowej. Wpadające do wnęki światło lasera odbija się pomiędzy lustrami. Powoduje ono, że mniejsze z luster, to na wsporniku zaczyna poruszać się w przód i w tył. Dzięki temu naukowcy mogą odpowiednio dobrać właściwości kwantowe promienia wychodzącego z wnęki.
      Światło lasera opuszczające wnękę zostaje ściśnięte, co pozwala na dokonywanie bardziej precyzyjnych pomiarów, które mogą przydać się w obliczeniach kwantowych, kryptologii czy przy wykrywaniu fal grawitacyjnych.
      Najważniejszą cechą tego systemu jest to, że działa on w temperaturze pokojowej, a mimo to wciąż pozwala na dobieranie parametrów z dziedziny mechaniki kwantowej. To całkowicie zmienia reguły gry, gdyż teraz będzie można wykorzystać taki system nie tylko w naszym laboratorium, które posiada wielkie systemy kriogeniczne, ale w laboratoriach na całym świecie, mówi profesor Nergis Mavalvala, dyrektor wydziału fizyki w MIT.
      Lasery emitują uporządkowany strumień fotonów. Jednak w tym uporządkowaniu fotony mają pewną swobodę. Przez to pojawiają się kwantowe fluktuacje, tworzące niepożądany szum. Na przykład liczba fotonów, które w danym momencie docierają do celu, nie jest stała, a zmienia się wokół pewnej średniej w sposób, który jest trudny do przewidzenia. Również czas dotarcia konkretnych fotonów do celu nie jest stały.
      Obie te wartości, liczba fotonów i czas ich dotarcia do celu, decydują o tym, na ile precyzyjne są pomiary dokonywane za pomocą lasera. A z zasady nieoznaczoności Heisenberga wynika, że nie jest możliwe jednoczesne zmierzenie pozycji (czasu) i pędu (liczby) fotonów.
      Naukowcy próbują radzić sobie z tym problemem poprzez tzw. kwantowe ściskanie. To teoretyczne założenie, że niepewność we właściwościach kwantowych lasera można przedstawić za pomocą teoretycznego okręgu. Idealny okrąg reprezentuje równą niepewność w stosunku do obu właściwości (czasu i liczby fotonów). Elipsa, czyli okrąg ściśnięty, oznacza, że dla jednej z właściwości niepewność jest mniejsza, dla drugiej większa.
      Jednym ze sposobów, w jaki naukowcy realizują kwantowe ściskanie są systemy optomechaniczne, które wykorzystują lustra poruszające się pod wpływem światła lasera. Odpowiednio dobierając właściwości takich systemów naukowcy są w stanie ustanowić korelację pomiędzy obiema właściwościami kwantowymi, a co za tym idzie, zmniejszyć niepewność pomiaru i zredukować szum kwantowy.
      Dotychczas optomechaniczne ściskanie wymagało wielkich instalacji i warunków kriogenicznych. Działo się tak, gdyż w temperaturze pokojowej energia termiczna otaczająca system mogła mieć wpływ na jego działanie i wprowadzała szum termiczny, który był silniejszy od szumu kwantowego, jaki próbowano redukować. Dlatego też takie systemy pracowały w temperaturze zaledwie 10 kelwinów (-263,15 stopni Celsjusza). Tam gdzie potrzebna jest kriogenika, nie ma mowy o niewielkim przenośnym systemie. Jeśli bowiem urządzenie może pracować tylko w wielkiej zamrażarce, to nie możesz go z niej wyjąć i uruchomić poza nią, wyjaśnia Mavalvala.
      Dlatego też zespół z MIT pracujący pod kierunkiem Nancy Aggarval, postanowił zbudować system optomechaczniczny z ruchomym lustrem wykonanym z materiałów, które absorbują minimalne ilości energii cieplnej po to, by nie trzeba było takiego systemu chłodzić. Uczeni stworzyli bardzo małe lustro o średnicy 70 mikrometrów. Zbudowano je z naprzemiennie ułożonych warstw arsenku galu i arsenku galowo-aluminowego. Oba te materiały mają wysoce uporządkowaną strukturę atomową, która zapobiega utratom ciepła. Materiały nieuporządkowane łatwo tracą energię, gdyż w ich strukturze znajduje się wiele miejsc, gdzie elektrony mogą się odbijać i zderzać. W bardziej uporządkowanych materiałach jest mniej takich miejsc, wyjaśnia Aggarwal.
      Wspomniane wielowarstwowe lustro zawieszono na wsporniku o długości 55 mikrometrów. Całości nadano taki kształt, by absorbowała jak najmniej energii termicznej. System przetestowano na Louisiana State University. Dzięki niemu naukowcy byli w stanie określić kwantowe fluktuacje liczby fotonów względem czasu ich przybycia do lustra. Pozwoliło im to na zredukowanie szumu o 15% i uzyskanie bardziej precyzyjnego „ściśniętego” promienia.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...