Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przenikliwe światło

Recommended Posts

Przed około 20 laty zaprezentowano teorię, mówiącą, że w nieuporządkowanym materiale istnieją "kanały", przez które może przenikać światło. Teoretycznie przewidziano, że materiały, przez które nic nie widać, mogą stać się przezroczyste. Dwóch holenderskich naukowców udowodniło właśnie, że teoria jest prawdziwa.

Gdy światło dociera do nieuporządkowanego materiału, różne długości fali są odbijane i pochłaniane. Jednak wspomniana na wstępie teoria mówi, że w takich nieuporządkowanych materiałach zawsze występują "kanały", przez które światło może przeniknąć do wnętrza. Wraz ze wzrostem grubości materiału kanałów tych jest coraz mniej, ale zawsze jakieś pozostaną. Teoria mówi, że powinno być możliwe takie przygotowanie światła, by różne długości fali wzmacniały się nawzajem (tzw. konstruktywna interferencja) i przechodziły przez otwarte kanały.

Allard Mosk i Ivo Vellekoop z Universiteit Twente pokazali, w jaki sposób można znaleźć te teoretycznie przewidziane kanały. Naukowcy skierowali laser na nieprzezroczystą warstwę tlenku cynku. Z drugiej strony warstwy ustawili aparat cyfrowy, który mierzył docierające doń światło. Po wykryciu światła, wykorzystali dane z aparatu do ustalenia właściwego kształtu fali światła. Kontrolowali go za pomocą wyświetlacza ciekłokrystalicznego, który selektywnie przepuszczał poszczególne części światła lasera. Dzięki manipulacji samym światłem Holendrzy byli w stanie aż o 44% zwiększyć jego ilość, która dotarła do aparatu. Gdy zwiększyli grubość warstwy tlenku cynku z 5,7 do 11,3 mikrometra ilość światła przechodzącego przez warstwę niemal się nie zmieniła.

Odpowiednie przeliczenie uzyskanych eksperymentalnie wyników pokazało, że maksymalnie aż 2/3 światła może przeniknąć przez ich warstwę. Zgadza się to z przewidywaniami omówionej teorii.

John Pendry, wybitny fizyk teoretyczny pracujący w Imperial College London, chwali prace holenderskich kolegów. Zauważa, że po raz pierwszy przeprowadzili dowód na prawdziwość wspomnianej teorii. Pendry mówi, iż zwiększenie przenikalności fali elektromagnetycznej będzie użyteczne przy obrazowaniu medycznym i terapii oraz posłuży do poprawy jakości sygnału telefonii komórkowej wewnątrz budynków.

Z nieuporządkowaniem i rozpraszaniem mamy do czynienia bez przerwy i zwykle są to zjawiska niepożądane. Dzięki ich zrozumieniu możemy jednak wykorzystać je do swoich potrzeb - dodaje Pendry.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      „Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
      Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
      Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
      Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
      Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
      Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance wylądował na Marsie po trwającej ponad pół roku podróży. W tym czasie był narażony na oddziaływanie dużych dawek promieniowania kosmicznego, które dodatkowo mogło zostać gwałtownie zwiększone przez koronalne wyrzuty masy ze Słońca. Na takie właśnie szkodliwe dla zdrowia promieniowanie narażeni będą astronauci podróżujący na Marsa. W przeciwieństwie do załogi Międzynarodowej Stacji Kosmicznej nie będą oni chronieni przez ziemską magnetosferę. Dlatego też wszelkie metody skrócenia podróży są na wagę zdrowia i życia.
      Emmanuel Duplay i jego koledzy z kanadyjskiego McGill University zaprezentowali na łamach Acta Astronautica interesującą koncepcję laserowego systemu napędowy, który mógłby skrócić załogową podróż na Marsa do zaledwie 45 dni.
      Pomysł na napędzanie pojazdów kosmicznych za pomocą laserów nie jest niczym nowym. Jego olbrzymią zaletą jest fakt, że system napędowy... pozostaje na Ziemi. Jedną z rozważanych technologii jest wykorzystanie żagla słonecznego przymocowanego do pojazdu. Żagiel taki wykorzystywałby ciśnienie fotonów wysyłanych w jego kierunku z laserów umieszczonych na Ziemi. W ten sposób można by rozpędzić pojazd do nieosiągalnych obecnie prędkości.
      Jednak system taki może zadziałać wyłącznie w przypadku bardzo małych pojazdów. Dlatego Duplay wraz z zespołem proponują rozwiązanie, w ramach którego naziemny system laserów będzie rozgrzewał paliwo, na przykład wodór, nadając pęd kapsule załogowej.
      Pomysł Kanadyjczyków polega na stworzeniu systemu laserów o mocy 100 MW oraz pojazdu załogowego z odłączanym modułem napędowym. Moduł składałby się z olbrzymiego lustra i komory wypełnionej wodorem. Umieszczone na Ziemi lasery oświetlałby lustro, które skupiałoby światło na komorze z wodorem. Wodór byłby podgrzewany do około 40 000 stopni Celsjusza, gwałtownie by się rozszerzał i uchodził przez dyszę wylotową, nadając pęd kapsule załogowej. W ten sposób, w ciągu kilkunastu godzin ciągłego przyspieszania kapsuła mogłaby osiągnąć prędkość około 14 km/s czyli ok. 50 000 km/h, co pozwoliłoby na dotarcie do Marsa w 45 dni. Sam system napędowy, po osiągnięciu przez kapsułę odpowiedniej prędkości, byłby od niej automatycznie odłączany i wracałby na Ziemię, gdzie można by go powtórnie wykorzystać.
      Drugim problemem, obok stworzenia takiego systemu, jest wyhamowanie pojazdu w pobliżu Marsa. Naukowcy z McGill mówią, że można to zrobić korzystając z oporu stawianego przez atmosferę Czerwonej Planety, jednak tutaj wciąż jest sporo niewiadomych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.
      Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.
      Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.
      Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Świat zmaga się z rosnącym kryzysem antybiotykooporności. Nadmierne używanie antybiotyków w medycynie, przemyśle spożywczym czy kosmetycznym, prowadzi do pojawiania się bakterii opornych na działanie antybiotyków. Przedostające się do środowiska antybiotyki, a w niektórych rzekach ich stężenie 300-krotnie przekracza bezpieczny poziom, wymuszają na patogenach ciągłą ewolucję w kierunku antybiotykooporności. Nawet w jelitach dzieci odkryto setki bakteryjnych genów antybiotykooporności. Bez nowych antybiotyków lub innych rozwiązań realny staje się scenariusz, w którym ludzie znowu zaczną umierać z powodu zwykłych zakażeń czy niegroźnych obecnie chorób.
      Jedną ze strategii spoza repertuaru środków chemicznych jest wykorzystanie metod fizycznych, jak światło ultrafioletowe, promieniowanie gamma czy ciepło. Metody są skuteczne w dezaktywowaniu patogenów, jednak prowadza do poważnych uszkodzeń tkanek, przez co nie mogą być stosowane w praktyce klinicznej.
      Dlatego też część naukowców zainteresowała się światłem widzialnym. W niskim natężeniu jest ono bezpieczne dla tkanek, a jednocześnie posiada zdolność dezaktywacji bakterii, wirusów i innych patogenów. Zajmujących się tym problemem specjalistów szczególnie interesują lasery femtosekundowe, emitujące ultrakrótkie impulsy światła, których czas trwania liczy się w femtosekundach (1 femtosekunda to 1/1 000 000 000 000 000 sekundy).
      Naukowcy z Washington University School of Medicine wykazali, że ultrakrótkie impulsy w zakresie światła widzialnego – o długości fali 415–425 nm – mogą być efektywną bronią przeciwko antybiotykoopornym bakteriom i ich przetrwalnikom.
      Naukowcy przetestowali laser na na metycylinoopornym gronkowcu złocistym (MRSA) oraz E. coli. Bakterie te są wysoce odporne na działanie licznych środków fizycznych i chemicznych. Laser testowano też na przetrwalnikach Bacillus cereus, które mogą powodować zatrucia pokarmowe i są w stanie przetrwać gotowanie. Testy wykazały, że laser dezaktywuje 99,9% bakterii poddanych jego działaniu.
      Naukowcy wyjaśniają, że przy pewnej mocy ich laser zaczyna dezaktywować wirusy. Po zwiększeniu mocy robi to samo z bakteriami. Jego światło pozostaje jednak bezpieczne dla ludzkich tkanek. Dopiero zwiększenie mocy o cały rząd wielkości zabija komórki. Zatem istnieje pewne okienko terapeutyczne, które pozwala na jego bezpieczne wykorzystanie.
      Ultrakrótkie impulsy laserowe dezaktywują patogeny, nie szkodząc ludzkim białkom i komórkom. Wyobraźmy sobie, że przed zamknięciem rany, operujący chirurg mógłby zdezynfekować ją za pomocą lasera. Myślę, że już wkrótce technologia ta może być wykorzystywana do dezynfekcji produktów biologicznych in vitro, a w niedalekiej przyszłości do dezynfekcji krwioobiegu. Pacjentów można by poddać dializie i jego krew przepuścić przez laserowe urządzenie ją dezynfekujące, mówi główny autor badań Shew-Wei Tsen.
      Tsen wraz z profesorem Samuelem Achilefu od lat badają zdolność ultrakrótkich impulsów laserowych do zabijania patogenów. Już wcześniej wykazali, że dezaktywują one wirusy i „zwykłe” bakterie. Teraz, we współpracy z profesor mikrobiologii Shelley Haydel z Arizona State University, rozszerzyli swoje badania na przetrwalniki oraz antybiotykooporne bakterie.
      Wirusy i bakterie zawierają gęsto upakowane struktury proteinowe. Laser dezaktywuje je wprowadzając te struktury w tak silne wibracje, że niektóre z wiązań w proteinach pękają. Taki pęknięty koniec stara się jak najszybciej z czymś połączyć i najczęściej łączy się z inną strukturą, niż ta, z którą był dotychczas powiązany. W ten sposób wewnątrz patogenu pojawiają się nieprawidłowe połączenia wewnątrz protein i pomiędzy nimi, co powoduje, że białka nie funkcjonują prawidłowo i patogen przestaje funkcjonować.
      Wszystko, co pochodzi od ludzi czy zwierząt może zostać zanieczyszczone patogenami. Wszelkie produkty krwiopochodne, zanim zostaną wprowadzone do organizmu pacjenta, są skanowane pod kątem obecności patogenów. Problem jednak w tym, że musimy wiedzieć, czego szukamy. Jeśli pojawiłby się nowy wirus krążący we krwi, jak np. miało to miejsce w latach 70. i 80. w przypadku wirusa HIV, to mógłby dostać się z takimi preparatami do krwioobiegu. Ultrakrótkie impulsy lasera to metoda, która pozwali upewnić się, że produkty krwiopochodne są wolne od patogenów. Zarówno tych znanych, jak i nieznanych, mówi Tsen.
      Więcej na temat badań grupy Tsena przeczytamy na łamach Journal Biophotonic.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...