Jump to content
Forum Kopalni Wiedzy
  • ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

    • By KopalniaWiedzy.pl
      Polska firma Ammono została laureatem nagrody Compound Semiconductor Industry Awards 2012. Przedsiębiorstwo wyróżniono za najbardziej przełomowy produkt półprzewodnikowy.
      Warszawska firma produkuje najdoskonalsze na świecie kryształy azotku galu.
      Kryształy te są niezbędne w przemyśle optoelektronicznym, pozwalają na tworzenie doskonalszych układów elektrycznych do samochodów hybrydowych czy w końcu dają nadzieję na stworzenie lepszych diod LED.
      Największe firmy i ośrodki naukowe z Japonii, Korei, Europy czy Stanów Zjednoczonych pracują nad uzyskaniem dużych, czystych kryształów azotku galu. Wyprzedziła je warszawska firma założona w 1992 roku przez czterech pracowników naukowych Uniwersytetu Warszawskiego.
      Więcej o Ammono można przeczytać w naszej informacji z 2010 roku.
    • By KopalniaWiedzy.pl
      Wkrótce w Polce zadebiutuje monitor HL229 tajwańskiej firmy Hanns.G. Urządzenie wyposażono w 22-calowy wyświetlacz LCD podświetlany diodami LED.
      Rozdzielczość monitora to Full HD (1920x1080), a proporcje jego boków wynoszą 16:9. Jasność obrazu wynosi 250 kandeli na metr kwadratowy. Standardowy kontrast to 1000:1, a kontrast dynamiczny wynosi 30000:1.
      Jak zapewnia producent czas reakcji matrycy to 5 milisekund, a kąt widzenia wynosi 170/160 stopni. Monitor wyposażono w dwa głośniki o mocy 1 wata każdy, porty DVI-D, VGA, wyjście audio oraz złącze Kensington. Urządzenie można postawić na stole lub, po zdemontowaniu podstawki, powiesić na ścianie.
      Monitor jest już dostępny na witrynie hannspree.com i kosztuje około 400 złotych. Objęto go 24-miesięczną gwarancją.
    • By KopalniaWiedzy.pl
      Po dziesięciu latach pracy naukowcom z Princeton University udało się skonstruować system, który pozwala na kontrolowanie spinu elektronów w krzemie nawet przez 10 sekund. Wydłużenie czasu, w którym można kontrolować spin elektronów jest niezbędne do skonstruowania praktycznego komputera kwantowego. Dotychczas udawało się utrzymać spin elektronów przez ułamki sekund. Stany kwantowe są bardzo nietrwałe i pod wpływem czynników zewnętrznych dochodzi do ich utraty, czyli dekoherencji. Kwantowy bit, na którym mają pracować kwantowe komputery, traci swoje właściwości i staje się „zwykłym“ bitem, przyjmującym w danym momencie tylko jedną wartość, zamiast wcześniejszych wszystkich możliwych wartości.
      Profesor Stephen Lyon i Alexei Tyryshkin, który są autorami najnowszego osiągnięcia, mówią, że kluczem do sukcesu było użycie niezwykle czystej próbki krzemu-28. Częściowo zawdzięczamy to udoskonaleniu metody pomiaru, ale większość zależy od materiału. To najczystsza próbka, jakiej dotychczas używaliśmy - mówi Lyon.
      Naukowcy zamknęli kawałek krzemu-28 w stalowym cylindrze wypełnionym helem. Wewnątrz panowała temperatura 2 kelwinów. Cylinder znajdował się pomiędzy dwoma pierścieniami, które miały za zadanie kontrolować pole magnetyczne wokół próbki. Po potraktowaniu krzemu mikrofalami doszło do skoordynowania spinów około 100 miliardów elektronów. Zaszła zatem koherencja i została ona utrzymana przez niewiarygodnie długie 10 sekund. Jej utrzymanie jest niezwykle ważne dla komputerów kwantowych, gdyż działające na nich oprogramowanie będzie potrzebowało czasu np. na korekcję błędów czy i operacje na danych. Muszą być one zatem dostępne na tyle długo, by program zakończył pracę z nimi.
      Stan kwantowy może zostać zniszczony przez naturalne pole magnetyczne materiałów. Dlatego też zdecydowano się na wykorzystanie krzemu-28, który, w przeciwieństwie do tradycyjnie używanego krzemu-25 ma niezwykle słabe pole magnetyczne.
      Projekt rozpoczął się 10 lat temu. Steve przyszedł do mnie i powiedział, żebyśmy wykorzystali próbkę wolną od innych izotopów - wspomina Tyryshkin. Po trzech latach badań uczeni byli wstanie utrzymać koherencję przez 600 mikrosekund. Przez kolejne lata wypróbowywali różne materiały.
      W końcu dzięki Avogadro Project, którego celem jest opracowanie nowej definicji kilograma, udało się uzyskać próbkę niezwykle czystego krzemu-28. Międzynarodowa współpraca dała niezwykłe wyniki. Zwykle w krzemie-28 znajduje się nawet 50000 części na milion krzemu-29, do tego dochodzą inne zanieczyszczenia, które mają silne pole magnetyczne. W oczyszczonym krzemie-28 liczba atomów krzemu-29 nie przekracza 50 na milion. Taka próbka była... zbyt czysta. Dodano do niej nieco fosforu, by była ona na tyle aktywna elektrycznie, żeby reagować na mikrofale. To właśnie ta reakcja, którą Lyon i Tyryshkin nazywają „echem“, gdyż są to mikrofale emitowane przez próbkę, pozwala na odczytanie spinu elektronów.
      Bardzo trudne było znalezienie odpowiedniej liczby atomów fosforu. Ich zbyt duża liczba oznaczałaby powstanie w próbce zbyt silnego pola magnetycznnego. Z kolei za mało fosforu dałoby zbyt słabe „echo“, którego nie można by odczytać. Istotne było też znaczne obniżenie temperatury próbki, gdyż w temperaturze pokojowej elektrony fosforu są zbyt aktywne. „Uspokajają się“ dopiero w temperaturze bliskiej zeru absolutnemu.
      Warto w tym miejscu przypomnieć, że już wcześniej innym zespołom naukowym udało się kontrolować spin elektronów przez równie długi czas. Wykonano nawet pewne operacje matematyczne. Jednak do eksperymentów używano jonów zamkniętych w komorach próżniowych. Lyon i Tyryshkin skupili się na krzemie, gdyż uważają, że jest on znacznie bardziej praktyczny. Współczesna elektronika już wiele dekad temu zrezygnowała przecież z lamp elektronowych na rzecz krzemu.
    • By KopalniaWiedzy.pl
      Współpraca naukowców z University of New South Wales, Melbourne University i Purdu University zaowocowała stworzeniem najmniejszego połączenia elektrycznego umieszczonego na krzemie. Ma ono grubość 1 atomu i szerokość 4 atomów. Mimo tak niewielkich rozmiarów transport elektronów odbywa się równie wydajnie co za pomocą tradycyjnego połączenia miedzianego.
      Osiągnięcie to ma olbrzymie znacznie na wielu polach rozwoju elektroniki i inżynierii. Pozwoli w przyszłości na dalsze zmniejszanie rozmiaru układów scalonych. Ponadto daje nadzieję na wykorzystanie w komputerach kwantowych techniki precyzyjnego wzbogacania krzemu pojedynczymi atomami.
      Prace australijsko-amerykańskiego zespołu wykazały też, że prawo Ohma ma zastosowanie w skali atomowej. To niesamowite, że Prawo Ohma, prawo tak podstawowe, zostaje zachowane przy budowaniu połączeń elektrycznych z pojedynczych cegiełek natury - stwierdził Bent Weber, jeden z twórców miniaturowych kabli. Badacze podkreślają, że połączenia były tworzone atom po atomie, co znacząco różni się od technik stosowanych we współczesnej elektronice. Obecnie usuwa się nadmiarowy materiał, a to technika trudna, kosztowna i nieprecyzyjna. Gdy schodzi się do wielkości poniżej 20 atomów, mamy do czynienia z takimi różnicami w liczbie atomów, że dalsze skalowanie jest trudne. Ale podczas tego eksperymentu stworzono urządzenie dzięki umieszczaniu pojedynczych atomów fosforu na krzemie i okazało się, że gęsto ułożony przewód o szerokości zaledwie 4 atomów działa tak, jak przewody metalowe - powiedział profesor Gerhard Klimeck z Purdue.
      Jak poinformowała profesor Michelle Simmons z University of New South Wales, która kierowała badaniami, głównym celem badań jest rozwój przyszłych komputerów kwantowych, w których pojedyncze atomy są wykorzystywane do przeprowadzania obliczeń.
    • By KopalniaWiedzy.pl
      Szwajcarscy uczeni z École Polytechnique FÉdÉrale de Lausanne (EPFL), którzy na początku bieżącego roku poinformowali o świetnych właściwościach molibdenitu, materiału mogącego stać się konkurencją dla krzemu i grafenu, właśnie zaprezentowali pierwszy układ scalony zbudowany z tego materiału.
      Zbudowaliśmy prototyp, umieszczając od dwóch to sześciu tranzystorów i udowadniając, że możliwe jest przeprowadzenie podstawowych operacji logicznych. To dowodzi, że można zbudować większy układ - mówi profesor Andras Kis, dyrektor Laboratorium Nanoskalowych Struktur i Elektroniki (LANES).
       
      Uczony wyjaśnia, że molibdenit umożliwia budowanie mniejszych tranzystorów niż krzem. Obecnie nie można tworzyć warstw krzemu cieńszych niż 2 nanometry, gdyż istnieje ryzyko ich utlenienia się, co negatywnie wpływa na właściwości elektryczne materiału. Z molibdenitu można tworzyć efektywnie działającą warstwę o grubości zaledwie 3 atomów. Jest ona bardzo stabilna i łatwo w niej kontrolować przepływ elektronów. Ponadto molibdenitowe tranzystory są bardziej wydajne. Przełączają się też szybciej niż tranzystory krzemowe.
       
      Jak informuje profesor Kis, molibdenit równie efektywnie jak krzem wzmacnia sygnał elektryczny. Sygnał wyjściowy może być czterokrotnie silniejszy niż sygnał wejściowy. A to oznacza, że możliwe jest produkowanie bardzo złożonych układów. Dla grafenu ta wartość wynosi około 1. Poniżej tej wartości sygnał wyjściowy będzie zbyt słaby, by pobudził do pracy następny, podobny układ - mówi Kis.
       
      Molibdenit, w przeciwieństwie do krzemu, ma interesujące właściwości mechaniczne, które być może pozwolą na produkowanie elastycznych układów scalonych.
×
×
  • Create New...