Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z izraelskiego Instytutu Weizmanna udowodnili istnienie użytecznych quasi-cząsteczek. Te zadziwiające cząstki mogą w przyszłości przydać się m.in. do budowy komputerów kwantowych. Istnienie quasi-cząsteczek zostało przewidziane teoretycznie 20 lat temu. Miały one towarzyszyć kwantowemu efektowi Halla. Izraelczycy po raz pierwszy natknęli się na quasi-cząsteczki już przed 10 laty.

Quasi-cząsteczki to cząstki, które posiadają jedynie część ładunku elektronu. I to właśnie czyni je niezwykłymi, gdyż elektron jest niepodzielną cząstką. Okazuje się jednak, że jeśli ułożymy elektrony w dwuwymiarową strukturę wewnątrz półprzewodnika, schłodzimy do temperatury bliskiej zeru absolutnemu i poddamy działaniu pola magnetycznego prostopadłego do warstwy elektronów, to zaczną się one zachowywać jak quasi-cząsteczki o ładunkach mniejszych, niż ładunek elektronu. Dotychczas jednak udawało się uzyskać quasi-cząsteczki o ładunku, który miał nieparzysty mianownik. Ich ładunek był więc 1/3 czy 1/5 ładunku elektronu.

Merav Dolev, student profesora Moty Heibluma, wraz z doktorami Vladimirem Umanskym i Dianą Mahalu oraz profesorem Adym Sternem, znaleźli sposób na stworzenie quasi-cząsteczki o precyzyjnie ustalonym przez nich ładunku. Stanowi on 1/4 ładunku elektronu.
Naukowcy wykorzystali do produkcji półprzewodnika niezwykle czysty arsenek galu. Utworzyli następnie dwuwymiarową strukturę elektronów, umieszczając około 3 miliardów tych cząstek na powierzchni milimetra kwadratowego w taki sposób, by na każdą fluktuację pola magnetycznego przypadało po pięć elektronów.

Stworzona przez nich struktura ma kształt spłaszczonego szkiełka od zegarka, z lekkim zgrubieniem pośrodku, które umożliwia ruch ograniczonej liczby naładowanych cząstek. Fluktuacje spowodowane ruchem cząstek w tym zgrubieniu umożliwiły naukowcom precyzyjne zmierzenie ładunku cząstek.

Uczeni szukali quasi-cząstek o ładunku z parzystym mianownikiem, potrzebnym do stworzenia teoretycznego "topograficznego komputera kwantowego". Quasi-cząstki z mianownikiem nieparzystym, w przeciwieństwie do tych z parzystym, nie są bowiem dobrymi nośnikami informacji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czym zabezpieczą tak podatny komputer na zakłócenia magnetyczne

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie powiem, fajnie się to czyta... "jeśli ułożymy elektrony w dwuwymiarową strukturę", "umieszczając około 3 miliardów tych cząstek na powierzchni milimetra kwadratowego", "w taki sposób, by na każdą fluktuację pola magnetycznego przypadało po pięć elektronów"... Robi wrażenie ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czym zabezpieczą tak podatny komputer na zakłócenia magnetyczne

 

Na początku to i tak bez znaczenia, bo nikt nie będzie chciał udostępnić takich komputerów publicznie. Taka moc obliczeniowa jest wstanie złamać każde zabepieczenie jakie stworzyliśmy do tej pory. Zatem wpierw umieszczą te komputery w specjalnych pomieszczeniach odizolowanych od otoczenia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii.
      Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu.
      Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex.
      Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów.
      Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber.
      Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki.
      To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin.
      Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra.
      Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się zrekonstruować w laboratorium falową naturę elektronu, jego funkcję falową Blocha. Dokonali tego naukowcy z Uniwersytetu Kalifornijskiego w Santa Barbara (UCSB), a ich praca może znaleźć zastosowanie w projektowaniu kolejnych generacji urządzeń elektronicznych i optoelektronicznych.
      Elektrony zachowują się jednocześnie jak cząstki oraz jak fala. Ich falowa natura opisywane jest przez naukowców za pomocą obiektów matematycznych zwanych funkcjami falowymi. Funkcje te zawierają zarówno składowe rzeczywiste, jak i urojone. Z tego też powodu funkcji falowej Blocha elektronu nie można bezpośrednio zmierzyć. Można jednak obserwować powiązane z nią właściwości. Fizycy od dawna próbują zrozumieć, w jaki sposób falowa natura elektronów poruszających się przez sieć krystaliczną atomów, nadaje tej sieci właściwości elektroniczne i optyczne. Zrozumienie tego zjawiska pozwoli nam projektowanie urządzeń lepiej wykorzystujących falową naturę elektronu.
      Naukowcy z Santa Barbara wykorzystali silny laser na swobodnych elektronach, który posłuży im do uzyskanie oscylującego pola elektrycznego w półprzewodniku, arsenu galu. Jednocześnie za pomocą lasera podczerwonego o niskiej częstotliwości wzbudzali jego elektrony. Wzbudzone elektrony pozostawiały po sobie „dziury” o ładunku dodatnim. Jak wyjaśnia Mark Sherwin, w arsenku galu dziury te występują w dwóch odmianach – lekkiej i ciężkiej – i zachowują się jak cząstki o różnych masach.
      Para elektron-dziura tworzy kwazicząstkę zwaną ekscytonem. Fizycy z UCSB odkryli, że jeśli utworzy się elektrony i dziury w odpowiednim momencie oscylacji pola elektrycznego, to oba elementy składowe ekscytonów najpierw oddalają się od siebie, następnie zwalniają, zatrzymują się, zaczynają przyspieszać w swoim kierunku, dochodzi do ich zderzenia i rekombinacji. W czasie rekombinacji emitują impuls światła – zwany wstęgą boczną – o charakterystycznej energii. Emisja ta zawiera informacje o funkcji falowej elektronów, w tym o ich fazach.
      Jako, że światło i ciężkie dziury przyspieszają w różnym tempie w polu elektrycznym ich funkcje falowe Blocha mają różne fazy przed rekombinacją z elektronami. Dzięki tej różnicy fazy dochodzi do interferencji ich funkcji falowych i emisji, którą można mierzyć. Interferencja ta determinuje też polaryzację wstęgi bocznej. Może ona być kołowa lub eliptyczna.
      Autorzy eksperymentu zapewniają, że sam prosty stosunek pomiędzy interferencją a polaryzacją, który można zmierzyć, jest wystarczającym warunkiem łączącym teorię mechaniki kwantowej ze zjawiskami zachodzącymi w rzeczywistości. Ten jeden parametr w pełni opisuje funkcję falową Blocha dziury uzyskanej w arsenku galu. Uzyskujemy tę wartość mierząc polaryzację wstęgi bocznej, a następnie rekonstruując funkcję falową, która może się różnić w zależności od kąta propagacji dziury w krysztale, dodaje Seamus O'Hara.
      Do czego takie badania mogą się przydać? Dotychczas naukowcy musieli polegać na teoriach zawierających wiele słabo poznanych elementów. Skoro teraz możemy dokładnie zrekonstruować funkcję falową Blocha dla różnych materiałów, możemy to wykorzystać przy projektowaniu i budowie laserów, czujników i niektórych elementów komputerów kwantowych, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy denerwujemy się, że nasz domowy pecet uruchamia się za długo, pewnym pocieszeniem może być informacja, iż w porównaniu z eksperymentalnymi komputerami kwantowymi jest on demonem prędkości. Uczeni pracujący nad tego typu maszynami spędzają każdego dnia wiele godzin na ich odpowiedniej kalibracji.
      Komputery kwantowe, a raczej maszyny, które w przyszłości mają się nimi stać, są niezwykle czułe na wszelkie zewnętrzne zmiany. Wystarczy, że temperatura otoczenia nieco spadnie lub wzrośnie, że minimalnie zmieni się ciśnienie, a maszyna taka nie będzie prawidłowo pracowała. Obecnie fizycy kwantowi muszą każdego dnia sprawdzać, jak w porównaniu z dniem poprzednim zmieniły się warunki. Później dokonują pomiarów i ostrożnie kalibrują układ kwantowy - mówi profesor Frank Wilhelm-Mauch z Uniwersytetu Kraju Saary. Dopuszczalny margines błędu wynosi 0,1%, a do ustawienia jest około 50 różnych parametrów. Kalibracja takiej maszyny jest zatem niezwykle pracochłonnym przedsięwzięciem.
      Wilhelm-Mauch i jeden z jego doktorantów zaczęli zastanawiać się na uproszczeniem tego procesu. Stwierdzili, że niepotrzebnie skupiają się na badaniu zmian w środowisku. Istotny jest jedynie fakt, że proces kalibracji prowadzi do pożądanych wyników. Nie jest ważne, dlaczego tak się dzieje. Uczeni wykorzystali algorytm używany przez inżynierów zajmujących się mechaniką konstrukcji. Dzięki niemu możliwe było zmniejszenie odsetka błędów poniżej dopuszczalnego limitu 0,1% przy jednoczesnym skróceniu czasu kalibracji z 6 godzin do 5 minut. Niemieccy naukowcy nazwali swoją metodologię Ad-HOC (Adaptive Hybrid Optimal Control) i poprosili kolegów z Uniwersytetu Kalifornijskiego w Santa Barbara o jej sprawdzenie. Testy wypadły pomyślnie.
      W przeciwieństwie do metod ręcznej kalibracji nasza metoda jest całkowicie zautomatyzowana. Naukowiec musi tylko wcisnąć przycisk jak w zwykłym komputerze. Później może pójść zrobić sobie kawę, a maszyna kwantowa sama się wystartuje - mówi Wilhelm-Mauch.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...